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Abstract

We provide a microfoundation for using aggregated data (e.g. mean purchases)
when evaluating consumer choice data. We present a model ofstatistical consumer
theory where the individual maximizes their utility with respect to a distribution
of bundles that is constrained by a statistic of the distribution (e.g. mean expen-
diture). We show that this behavior is observationally equivalent to an individual
whose preferences depend only on the statistic of the distribution. This means
that despite working with distributions, the empirical content of the model only
depends on a �nite-dimensional statistic. Statistical consumer theory neither nests
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1 Introduction

Outside of experimental settings, data typically do not match the classic consumer prob-

lem of utility maximization subject to a budget constraint. A leading example is scanner

data. Such data is highly disaggregated, typically at the transaction-level. This raises

several concerns when attempting to apply consumer theory. First, it is unclear whether

the budget of the consumer is at the transaction or for a longer period of time. A second

concern is the \zeros" problem: a typical transaction involves zero quantities of many

goods, though when examining many transactions an individual may purchase a wide

variety of goods. In practice, researchers typically aggregate (sum up) the disaggregated

data across time to address the zeros problem. In this case, budgetary constraints are in

terms of aggregated data. For example,Echenique et al.(2011) process transaction-level

data to form quantities for four-week periods and analyze this aggregated data without

referencing the original primitive data.1 Several questions arise from this procedure: Pre-

cisely, how does the budget enter? What information is lost when working directly with





over �nitely many alternatives. FollowingMachina (1985), we take a \demand approach,"

but study the classical consumer setting with distributions over consumption bundles. We

di�er from Machina (1985) since distributions over bundles are an in�nite dimensional

object and we leverage price variation from the standard consumer problem. The main

characterization with a mean expenditure constraint demonstrates an important dimen-

sion reduction aspect where an in�nite dimensional model is observationally equivalent

to a �nite dimensional one.

Our approach di�ers from random utility models (RUMs), which are the main pa-

radigm to model stochastic choice and have a rich intellectual history followingThur-

stone (1927), Luce (1959), Block and Marschak (1960), Falmagne (1978), McFadden

and Richter





selection of a particular bundle inRL
+ according to this distribution.

The primitive dataset D :=
�

(pt ; mt ; � t ) : t 2 T



Figure 1a, all bundles chosen with positive probability have expenditure equal to the

average expenditure. In contrast, Figure1b has bundles chosen with positive probability

that are below (blue) or above (red) the average expenditure constraint. One could

interpret purchases below average expenditure as \saving" behavior whereas a realization

of purchases above average expenditure could be interpreted as \splurging" behavior.

Moreover, this distribution has several realizations with zero purchases of di�erent goods





Mean acyclicity requires further comment. In particular, the condition applies to one

element cyclesC =
�

(t; t )
	

. It follows that maximization of a locally nonsatiated utility

function requires that
R

(pt � x)d� t (x) = mt , for all t 2 T. Thus, the budget constraint

must be binding for every observed choice. An important practical implication of this

fact is that it is not crucial for the analyst to observe the expenditure levelmt . Thus, one

only needs a dataset
�

(pt ; � t )
	

t2 T
while setting the expenditure levelmt =

R
(pt � x)d� t (x)

to check mean acyclicity.

The de�nition of mean acyclicity is equivalent to restrictions on the revealed preference

relations. In particular, mean acyclicity coincides with thegeneralized axiom of revealed

preference(GARP) on the revealed preference relationR� so that

� t R� � s implies not � s P � t : (4)

Mean acyclicity is a straightforward extension of GARP (as inAfriat , 1967; Diewert, 1973;

Varian, 1982) to choices over probability measures, rather than consumption bundles. In

fact, if the consumer chooses only degenerate lotteries, then GARP coincides with mean

acyclicity. To see this, for all t 2 T a degenerate lottery satis�es� t = � x t , where the

latter denotes the Dirac measure concentrated at somex t 2 RL
+ . Therefore, we have

R
(pt � x)d� s(x) = pt � xs for all t; s 2 T, which reduces mean acyclicity to GARP.

Finally, by Lemma 11.45 inAliprantis and Border (2006), we have
Z

(p � x)d� (x) = p �
Z

x d� (x)

for all � 2 � and t 2 T. This implies that all relevant information for mean acyclicity

is summarized by theL-dimensional mean bundle
R

x d� (x) for the distribution � . In

practice, estimating mean bundles rather than the whole distribution� t is su�cient to

check the mean acyclicity condition.



If the dataset can be rationalized with a mean choice model, then any utility function

that rationalizes the data only depends on the mean bundle (a vector), rather than all

information in the distribution. In the main theorem below, we show that locally nonsa-



� t only matters insofar as it leads to error in estimating themeanof consumption. This

is because checking mean acyclicity is possible by checking restrictions onmeans. We

leverage the dimension reduction aspect to incorporate variability in empirically relevant

datasets inAllen et al. (2021).

2.3 Relation to a random income model

The model of distributional preferences above may seem stylized, but we show it gen-

eralizes a class of random utility models where income is also random and unobserved.

In applied analysis, it is often assumed that the income of an individual is equal to ex-

penditure on goods. However, since income is often unobserved, it might make more

sense to treat it as a random variable. If preferences and income are random, then we

are essentially in the case of the Sonnenschein-Mantel-Debreu (Debreu, 1974) anything

goes result for mean demands.12 However, we show that a random quasilinear utility

maximizer with random income is rationalizable with a mean choice model.

To formalize this, let (�; " ) be random variables that govern random utility functions

and income. We assume these variables are independent of prices, but allow preferences

to be potentially correlated with income. We give a precise de�nition of this model below.

De�nition 3. A random quasilinear utility and income modelwith random variables

(�; " ) has individuals make choices according to

max
(x;y )2 RL

+ � R
u(x; � ) + y

s.t. p � x + y � m("):

Thus, the realization of the random variable� gives a random draw of preferences,

while the random variable" governs the realization of income. To show the relation to

a mean choice model and distributional choice, we will make some assumptions. For

technical simplicity, we suppose that(�; " ) takes values in the �nite setN � E and for

each realization of� the utility function u : RL
+ � N ! R yields a unique maximizer for all

pricesf ptgt2 T . We let x � ;t (�; " ) denote the unique choice given pricept and unobservables

(�; " ). To map to our previous analysis, given a pricept , a distribution of choices arises

12



becausex � ;t (�; " ) is random due to(�; " ). The quasilinear model has recently been studied

in Brown and Calsamiglia(2007) and Allen and Rehbeck(2020a,b).

The paper byAllen and Rehbeck(2020b) shows that the solutions to the maximization



is rationalized by arandom utility model (RUM) if there is a probability measure� over

the space of functionsU such that, for all t 2 T:

� t (O) = �
� �

~u 2 U : argmaxy2 B t ~u(x) 2 O
	 �

; (6)

for any measurable subsetO � RL
+ , where theargmax set is a singleton sinceU consists

of strictly quasiconcave functions. In other words, the probability of choosing a bundle

in the set O is equal to the probability of drawing a utility function that is maximized

over B t at some point in the setO. For a linear programming characterization of RUM

seeMcFadden and Richter(1990), McFadden(2005), and Kitamura and Stoye (2018).13

Distributions of choices generated by a random utility model are in the set

C(p; m) :=
n

� 2 � : �
�
B (p; m)

�
= 1

o
:

A key di�erence between the mean choice model and random utility model is that budget

setsA(p; m) and C(p; m) are di�erent. The mean choice model allows choice of consump-

tion bundles that exceed the expenditure levelmt , which is not allowed in random utility

models. Recall that as emphasized above, for the mean choice model only the average

expenditure need be measured. The random utility model has a �xed budget, in which

case the average expenditure is the same as the expenditure for each realization of the

random utility. To further compare the models, we restrict attention to distributions

when the support of � t is a subset ofB t ,14 for all t 2 T. We show that mean choice

models neither nest nor are nested in random utility models for such distributions.

In Example 1, we discuss a dataset that can be rationalized only by a mean choice

model. Here, there is no RUM that can generate the observations. Despite this, the

mean behavior is consistent with mean acyclicity. In contrast, the dataset in Example2

is only rationalizable by a RUM. Since the models describe di�erent behavior, one can

discriminate between mean choice models and RUMs using �eld data or experiments.

Example 1. Let a primitive dataset be given byD =
�

(p1; m1; � 1); (p2; m2; � 2)
	

, where

p1 = (2 ; 1), p2 = (1 ; 2), and m1 = m2 = 1. In addition, suppose that measure� 1 assigns

probability 7=12 to bundle (1=2; 0) and 5=12 to (0; 1), while � 2 assigns probability7=12

to (0; 1=2) and 5=12 to (1; 0).
13 Alternatively, random utility models are characterized by the axiom of revealed stochastic preferences

in McFadden and Richter (1990) and McFadden (2005) which is conceptually more similar to GARP.
14 The support of � t is the smallest closed setK such that � t (K ) = 1 .
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Both
R

(p1 � x)d� 2(x) and
R

(p2 � x)d� 1(x) are equal to13=12 > 1 = m1 = m2, which

su�ces for the set of observations to satisfy mean acyclicity and, thus, be rationalizable

by a mean choice model. Equivalently, the means of distributions� 1, � 2 are given by

�x � 1 = (7 =24; 5=12), �x � 2 = (5 =12; 7=24), respectively, wherep1 � �x � 2 = p2 � �x � 1 = 13=12 > 1.

See Figure2 for a graphical interpretation.
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(0; 1)

(1; 0)

�x � 1

�x � 2

p1

p2

Figure 2: Graphical interpretation of the dataset in Example 1.

In contrast, the data are inconsistent with the random utility model. Indeed, since

p1 � (0; 1=2) = 1=2 < m 1, there must be probability of at least 7=12 on utilities where

bundle (0; 1=2) is strictly inferior to (1=2; 0). Analogously, asp2 � (1=2; 0) = 1=2 < m 2, at

least a probability of 7=12 on utilities must rank (0; 1=2) strictly over (1=2; 0). However,

this would imply that for a probability of at least 1=6 of all utilities we would have both

u(1=2; 0) > u (0; 1=2) and u(1=2; 0) < u (0; 1=2), which yields a contradiction.

Example 2. Let the primitive dataset be given byD =
�

(p1; m1; � 1); (p2; m2; � 2)
	

where

p1 = (2 ; 1), p2 = (1 ; 2), and m1 = m2 = 1; moreover, the measure� 1 assigns probability

1=2 to bundles (1=2; 0) and (1=4; 1=2), while � 2 assigns probability1=2 to (0; 1=2) and

(1=2; 1=4). See Figure3 for a graphical representation.

One can easily show that the dataset violates mean acyclicity. At the same time, it is

straightforward to show that the set of observations can be rationalized with a random

utility model. Clearly, one can always �nd a functionu1 : R2
+ ! R in U that is uniquely

maximized at (1=2; 0) over B 1 :=
�

x 2 R2
+ : p1 � x � 1

	
and uniquely maximized at

14





is feasible ifgt
�
S(� )

�
� 0. Here a general dataset is given byDG =

�
(gt ; � t ) : t





whereE(� ) =
�
E` (� )

� L

`=1
and Var(� ) =

�
Var` (� )

�



rationalizes the data whereL = f 1; : : : ; Lg and J = f 1; : : : ; Jg. Thus, one can rationalize

the choice of distributional choice that only depend on the moments of the distribution.

Straightforward extensions of this could place restrictions on moments across goods. As in

the previous example, one could also add the restriction of average expenditure constraints

to the function that described the budget constraint and still obtain a preference that

only depends on moments of the distribution.

We note that as additional moments of a distribution are modeled in the constraints,

there are fewer revealed preference comparisons. To see this, note that if one adds an

additional moment restriction to the constraints, then a distribution must satisfy an

additional inequality to be revealed preferred. Thus, introducing additional moments

to the constraints will necessarily describe more datasets. One potentially interesting

exercise would be to look for the least moment restrictions that rationalize a dataset.

5 Conclusion

This is the �rst paper to provide a microfoundation for using aggregated data to exam-

ine consumer preferences. Even though many papers empirically analyze models using

aggregate choices, until this paper there was no formal microfoundation that justi�ed

this practice. We show that if individuals have a preference for randomization, then it is

without loss of generality to use data on aggregate choices.

More broadly, this paper relates to the growing literature on stochastic choice. For

example, we show how a random quasilinear utility model with random incomes is nested

in the approach. We also show that in practice statistical choice models can be di�er-

entiated from random utility models that have a �xed budget. While the main results

study the average expenditure constraint, we show that the results also apply to general

constraints that depend on astatistic of the distribution. We show how this can be used

in practice to characterize a generalization of mean-variance preferences and preferences

that depend on arbitrary moments.

One implication of the results for the mean choice model is that welfare analysis is

possible by building on existing results from the standard consumer problem. Moreover,

since it is without loss of generality to study models that depend on mean consumption,

19



an applied researcher can use their favorite functional forms from consumer theory. For

example, one can use a Cobb-Douglas model and replace the choice of consumption

bundles with means. Lastly, in ongoing work (Allen et al., 2021



have gt (� s) = 0 , for all (t; s) 2 C. By Lemma 2 in Forges and Minelli (2009), there are

numbersf � tgt2 T and strictly positive numbersf � tgt2 T such that � s � � t + � tgt



fact that f is concave and strictly increasing follows directly from the construction of

the function in the proof of Theorem2 and the fact that for all t 2 T the function gt is

concave (in fact, linear) and strictly increasing.

Proof of Proposition 1. Suppose that the data is generated by a random quasilinear util-

ity and income model as in the statement of the proposition. For eachpt , let

�
x � ;t (�; " ); y� ;t (�; " )

�
:= argmax

(x;y )2 RL
+ � R

n
U(x; � ) + y

�
� pt � x + y � m(")

o

be the maximizer of choices when the values(�; " ) are realized by the random variables.

Here y� ;t (�; " ) = m(") � pt � x � ;t (�; " ).

Conditioning on the realization of the random variables, we can compare this to the

x � ;s(�; " ) when purchased at pricespt . It follows that

U
�
x � ;t (�; " ); �

�
� ptx � ;t (�; " ) � U

�
x � ;s(�; " ); �

�
� ptx � ;s(�; " )

where �niteness of the utility numbers is ensured by the existence of maximizers. Still

conditioning on (�; " ), we can look at any sequencef tmgM
m=1 with tm 2 T and get that

MX

m=1

ptm �
�

x � ;t m (�; " ) � x � ;t m +1 (�; " )
�

� 0

wheretM +1 = t1. Taking expectations over(�; " ), it follows that

MX

m=1

ptm �
�

E
�
x � ;t m (�; " )

�
� E

�
x � ;t m +1 (�; " )

� �
� 0

where tM +1 = t1 by linearity of expectations. This holds for any dataset generated by a

random quasilinear utility and income maximizer.

To see that mean acyclicity is satis�ed, suppose by contradiction that there is a cycle.

It follows that there exists a sequencef ~tmgM
m=1 with ~tm 2 T where

p~tm � E
�
x � ;~tm +1 (�; " )

�
� p~tm � E

�
x � ;~tm (�; " )

�

with at least one inequality strict where~tM +1 = ~t1. Summing these inequalities up yields

MX

m=1

ptm �
�

E
�
x � ;t m (�; " )

�
� E

�
x � ;t m +1 (�; " )

� �
> 0

which contradicts that the data is generated by a random quasilinear utility.
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Appendix B First order stochastic dominance

Here we discuss properties of the �rst order stochastic dominance. Let� X denote a

Borel space of probability distributions over someX � RL . We consider the usual

partial order over RL , i.e., for x; y 2 X � RL , x � y if and only if x i � yi for each

` = 1; : : : ; L. The distribution � �rst order stochastically dominates� , or � � � , whenever
R

f (x)d� (x) �
R

f (x)d� (x), for any measurable, bounded, and nondecreasing function

f : X ! R.

One can show that� is a partial order over � X . This follows from Theorem 2 in

Kamae and Krengel(1978) and the fact that RL is a Polish space.

Lemma B.1. Suppose that� � � , for some �; � 2 � X . There is a probability space

(
 ; F ; � ) and random variablesX � ; X � : 
 ! X such that

(i) X � and X � are distributed according to� and � respectively, i.e., for any Borel

measurable setO � X we have

� (O) = �
� �

! 2 
 : X � (! ) 2 O
	 �

and � (O) = �
� �

! 2 
 : X � (! ) 2 O
	 �

;

(ii) X � (! ) � X � (! ), for all ! 2 
 .

See Lemma 4 inKamae and Krengel(1978) for the proof. We say that � strictly

dominates� , and denote it by � � � , if � � � and � 6= � . Using LemmaB.1, it is easy

to show that we have� � � if and only if there are random variablesX � ; X � : 
 ! X

such that X � (! ) � X � (! ), for all ! 2 
 , where the inequality is strict for all ! in some

measurable setF such that � (F ) > 0. We now prove a series of lemmas.

Lemma B.2. The distribution � �rst order stochastically dominates� , or � � � , if and

only if � (D) � � (D), for any measurable and upward comprehensive setD.20

Proof. We prove the implication () ) by contradiction. Suppose that� � � , but there is

some measurable, upward comprehensive setD such that � (D) < � (D). Let � D be the

indicator function, taking values � D (x) = 0 , for x =2 D, and � D (x) = 1 otherwise. The



is increasing. Since the simple function is de�ned on a measurable set, it is measur-

able. However, it must be that
R

� D (x)d� (x) = � (D) < � (D) =
R

� D (x)d� (x), which

contradicts that � �rst order stochastic dominates� .

The converse follows directly from the de�nition of Lebesgue integration. Suppose

that, for any upward comprehensive and measurable setD, we have � (D) � � (D).

Clearly, D is upward comprehensive if and only if its complementRL n D is downward

comprehensive. Thus, for any such setE, we have� (E) � � (E).

Take any bounded, measurable, and increasing functionf : RL ! R. Clearly, for all

r 2 R any sets of the form
�

y 2 RL : f (y) > r
	

and
�

y 2 RL : f (y) < r
	

are upward

and downward comprehensive, respectively. Moreover, they are both measurable, by

measurability of f . This implies that
Z

f (x)d� (x) =
Z 1

0
�

� �
x 2 RL : f (x) > y

	 �
dy �

Z 1

0
�

� �
x 2 RL : f (x) < y

	 �
dy

�
Z 1

0
�
� �

x 2 RL : f (x) > y
	 �

dy �
Z 1

0
�
� �

x 2 RL : f (x) < y
	 �

dy

=
Z

f (x)d� (x):

Since this is true for any increasing functionf , the proof is complete.

Before we state the next result, a functionf : X ! R is strictly increasing if x0
` � x` ,

for all ` = 1; : : : ; L, and x0
` > x ` , for some`, implies f (x0) > f (x), for any x; x0 2 X .

Lemma B.3. Suppose that� � � , for some � , � 2 � X . For any strictly increasing

function f : X ! R, we have
R

f (x)d� (x) >
R

f (x)d� (x).

Proof. Given that � � � , Lemma B.1 implies that there is a probability space(
 ; F ; � )

and random variablesX � , X � : 
 ! X that are distributed according to� , � respectively,

and X � (! ) � X � (! ), for all ! 2 
 . Since� � � , let 
 0 � 
 be de�ned so that


 0 =
�

! 2 
 : X � (! ) > X � (! )
	

:

where� (
 0) > 0 (recall LemmaB.1). For any strictly increasing f : X ! R, we have
Z

f (x)d� (x) �
Z

f (x)d� (x) =
Z




h
f

�
X � (! )

�
� f

�
X � (! )

� i
d� (! )

=
Z


 0

h
f

�
X � (! )

�
� f

�
X � (! )

� i
d� (! ) > 0:

This completes the proof.
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Lemma B.4. Suppose thatX + RL
+ � X . For any measure� 2 � X and its neighborhood,

we have� � � , for some� in the neighborhood.

Proof. We show that for any� 2 � there is a sequencef � kg in � that weakly converges

to � and � k � � , for all k. Take any probability space(
 ; F ; � ) and the random variable

X � : 
 ! X that is distributed according to � , i.e., for any measurableO � X we have

� (O) = �
� �

! 2 
 : X � (! ) 2 O
	 �

:

Take any sequencef X kg of random variablesX k : 
 ! R that pointwise converge toX �

and satisfyX k(! ) > X � (! ), for all ! 2 
 .

For eachk, de�ne a probability measure� k so that for any measurableO � X

� k(O) := �
� �

! 2 
 : X k(! ) 2 O
	 �

:

SinceX + RL
+ � X , we have� k 2 � X . Moreover, for any measurable, upward compre-

hensive setD, it must be that

� k(D) = �
� �

! 2 
 : X k(! ) 2 D
	 �

� �
� �

! 2 
 : X � (! ) !
	 �

, D
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