%PDF-1.2 %忏嫌 8 0 obj << /Length 9 0 R >> stream BT 298.32 717.72 TD 0 0 0 rg /F0 19.5056 Tf 0 Tc 0.0436 Tw ( ) Tj 0 -22.44 TD ( ) Tj -129.24 -25.08 TD /F0 22.4256 Tf -0.0129 Tc -0.0735 Tw (Convergence and Crossover:) Tj 258.6 0 TD 0 Tc 0.0336 Tw ( ) Tj -290.16 -25.8 TD -0.0225 Tc 0.0161 Tw (The Permutation Problem Revisited) Tj 321.48 0 TD 0 Tc 0.0336 Tw ( ) Tj -160.68 -19.2 TD /F0 15.5344 Tf -0.0436 Tw ( ) Tj 0 -17.88 TD ( ) Tj -93.48 -18 TD 0.0312 Tc -0.0748 Tw (Tom Froese) Tj 74.76 0 TD 0 Tc -0.0436 Tw ( ) Tj 3.84 0 TD 0.0351 Tc -0.0787 Tw (and Emmet Spier) Tj 108.24 0 TD 0 Tc -0.0436 Tw ( ) Tj -93.36 -14.16 TD /F0 11.68 Tf -0.04 Tw ( ) Tj 0 -13.44 TD ( ) Tj T* ( ) Tj T* ( ) Tj -32.76 -17.04 TD /F0 15.5344 Tf 0.0373 Tc -0.0809 Tw (CSRP 596) Tj 65.52 0 TD 0 Tc -0.0436 Tw ( ) Tj -32.76 -14.28 TD /F0 11.68 Tf -0.04 Tw ( ) Tj 0 -13.44 TD ( ) Tj -31.8 -17.04 TD /F0 15.5344 Tf 0.0263 Tc -0.0699 Tw (June 200) Tj 55.92 0 TD 0.0328 Tc 0 Tw (8) Tj 7.68 0 TD 0 Tc -0.0436 Tw ( ) Tj -31.8 -14.4 TD /F0 11.68 Tf -0.04 Tw ( ) Tj 0 -13.44 TD ( ) Tj T* ( ) Tj T* ( ) Tj -52.56 -17.04 TD /F0 15.5344 Tf 0.0235 Tc -0.0671 Tw (ISSN 1350) Tj 68.76 0 TD -0.013 Tc 0 Tw (-) Tj 5.16 0 TD 0.0628 Tc (3162) Tj 31.2 0 TD 0 Tc -0.0436 Tw ( ) Tj -52.56 -14.16 TD /F0 11.68 Tf -0.04 Tw ( ) Tj 0 -13.44 TD ( ) Tj T* ( ) Tj ET q 259.2 0 0 -115.32 168.72 357.24 cm /im1 Do endstream endobj 9 0 obj 1392 endobj 11 0 obj << /Type /XObject /Subtype /Image /Name /im1 /Width 308 /Height 138 /BitsPerComponent 8 /ColorSpace [ /Indexed /DeviceRGB 255 10 0 R ] /Length 12 0 R >> stream K O!* %'!5 @q & 7C // KK .!  *K>4V4].*H|-4)94w}~ #a#4?RHU+)62E34?('9?{#)Fk49448+)449Z*B))-$4248<.M)!KM+)))),aJ.R(0+'*? (66*9>!A82IH4>+C+'2'4?3*64A(M))#/R80UBUkX)4/8(">!?U$!0444M'00'9'(002 8,)9#"1U?)2{-,)IA'L61*9 0 ,  k2)3I44!8#CCf)O?RK')xT`)DyC8 Nk?5M9 z    4Lk$!K9a'>,K>Hw8<!?,))8&'X)8$$6)I* Kv)% ! F9 #4"Fwq^)?N4#E+$4)O(-)<*5?+AK, )*))4 U5j,3m(MK#4)A ,JI)u+$I' )  )  7H 4k?? `4I84k^k4U#4";'48**"fVF/)0$43 C/J8)I)#U 4f*+JK b 84$+SR+T)> K0))A4J9 #0*##  5I!/(?/42S?(0XJ)O081)X'+!AI  $?)+ 54#L#'M4  6/"(>6)'A6)*2)/'MK+M*`/*?,)9;(S)4*S)4++$'2-Z4>&;tR!)))0S)9)) #)&!)3KV ;))4 ;V#;4$<4S<J949BL6XO?<:I;,)(()C'  4?Ns'** !d lE,)) /M2   #)%C<,A,;   )) o)(W) $rU.8b'*0,  )<!)OIBRS//0  q( ,)!4?24.C4404'    !C?,6' ;/p7 C 5!  ) N 8))))A%o4:K  (;/`,)S(++nX$   N-),+'68  m")))?';O!0e!   '<))h$?I  ))#O 5K))+;U# )')))-(% /! '!/ ** ( )))U4)TR)A*kKI6/>95l))+l+08^8+<+KF+ !#  C))4 A> Cj)A<,EB!M8>F)#'`,RL) @-R5)@8. "  9))))`,KS'4  ) E4*R*<)M7h/);Oi<KHa)B T)))>/M#ghB 4C)4 F)L) 9.)))4)$  )MNYc4) 4 %)4fa #0*'! 8  #B0BR ) ")0 54CB4A+*E8R84K& 4/ 4) 4) BS>!+) )`%4`e2 #,c7# 4 )U/>X3444#B44#O)L?4d*8 A+(bI91! 4C)  #R4$`,)<  M) !<IKBL)*(?E#)/"N) 4)#^, 54/)._`?AV")6C) ))U>Ja#&))O]# 6)& ,4+.U,%,FQ!> ?OEB ').U,%?,/?VFHR8W9448,S&IX6*LY 06NZ MKS[';)\%5?*!!9PC,;# "83>Q9,'K9B",0.4<'(R+44 $SC*0?23R0#T0)+J"+)?A/M*+4K4 $ ''C 5 H%    !N  * OE/L ;'!K! E3   $/J) $5)5K#)L#EF.,FG;  )(  H'I4 <)))) (@4)A * B C)4 &D/478),,,)).8))9): ;2<, =>?(4 )  ))* +,)-./"0)123-456        !"#$ %  !&' (  endstream endobj 12 0 obj 42504 endobj 10 0 obj << /Length 13 0 R /Filter /ASCII85Decode >> stream !!!$!s8W&rrVQHfr;6Bfq>&F[`l>[%NduJ;JUEH,HB<]+SrelK\[LJOg%kFu=>+XJeTN4/\L3((qK9,q*G2#of[@h]IjRuE0&S!RG[:6C-W90kb4 O,=P\(=pdSeBH$L?!2i'EN,IqRuN8=>Zfk8f!h]XT9>0]+XD2C@m`79dE':2:eV#q %]5YY5r^g)T::LWEM&AP5W:TTGB-h]8mkUpFD#&3+si4tH#mP)q"OM9-n;9hRbcQE )&4+Nh:rSP'jjm8d)X)pmd2\W.r8Qso'c%XXf2L.&(SqIJ9#Ku5Zg%TUalje]>J:zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz~> endstream endobj 13 0 obj 594 endobj 14 0 obj << /Length 15 0 R >> stream Q BT 427.8 242.04 TD ( ) Tj -129.48 -10.56 TD ( ) Tj 0 -13.44 TD ( ) Tj -81.72 -13.44 TD 0.0014 Tc 0 Tw (____________________________) Tj 163.44 0 TD 0 Tc -0.04 Tw ( ) Tj -81.72 -13.44 TD ( ) Tj -71.16 -20.76 TD /F0 19.5056 Tf -0.0133 Tc 0.0569 Tw (Cognitive Science) Tj 142.2 0 TD 0 Tc 0.0436 Tw ( ) Tj -135 -22.44 TD -0.0436 Tc 0.0872 Tw (Research Papers) Tj 127.92 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj -63.96 -15 TD ( ) Tj -84.72 -13.44 TD 0.0028 Tc 0 Tw (_____________________________) Tj 169.44 0 TD 0 Tc -0.04 Tw ( ) Tj ET endstream endobj 15 0 obj 563 endobj 4 0 obj << /Type /Page /Parent 5 0 R /Resources << /Font << /F0 6 0 R >> /XObject << /im1 11 0 R >> /ProcSet 2 0 R >> /Contents [ 8 0 R 14 0 R ] >> endobj 17 0 obj << /Length 18 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj -5.88 688.8 TD /F0 11.68 Tf 0.04 Tc 0 Tw (2) Tj -414.6 -39.24 TD /F0 15.5344 Tf 0.0128 Tc -0.0564 Tw (Convergence and c) Tj 119.4 0 TD 0.0057 Tc 0 Tw (rossover:) Tj 57 0 TD 0 Tc -0.0436 Tw ( ) Tj 3.96 0 TD -0.0115 Tc 0 Tw (T) Tj 9.48 0 TD 0.0076 Tc -0.0112 Tw (he permutation problem revisited) Tj 207.12 0 TD 0 Tc -0.0436 Tw ( ) Tj -186.72 -14.28 TD /F0 11.68 Tf -0.04 Tw ( ) Tj 0 -13.32 TD ( ) Tj -210.24 -13.44 TD -0.0249 Tc 0.1349 Tw (Tom Froese and Emmet Spier) Tj 140.16 0 TD 0 Tc -0.04 Tw ( ) Tj -140.16 -13.44 TD ( ) Tj 0 -13.44 TD ( ) Tj T* 0 Tc 0.008 Tw (Centre for Computational Neuroscience and Robotics) Tj 250.8 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0027 Tc 0 Tw (\(CCNR\)) Tj 39.6 0 TD 0 Tc -0.04 Tw ( ) Tj -293.28 -13.44 TD -0.0045 Tc -0.0155 Tw (Centre for Research in Cognitive Science \(COGS\)) Tj 235.44 0 TD 0 Tc -0.04 Tw ( ) Tj -235.44 -13.44 TD 0.0016 Tc -0.0416 Tw (亚洲情色, ) Tj 103.08 0 TD -0.0042 Tc 0.0442 Tw (Brighton BN1 9QH, ) Tj 97.92 0 TD 0.087 Tc 0 Tw (UK) Tj 17.04 0 TD 0 Tc -0.04 Tw ( ) Tj -218.04 -13.44 TD ( ) Tj 0 -13.44 TD 0 0 1 rg 0.0092 Tc 0 Tw (t.froese@sussex.ac.uk) Tj ET 88.08 584.52 103.8 0.48 re f BT 191.88 586.32 TD 0 0 0 rg 0 Tc -0.04 Tw ( ) Tj -103.8 -13.44 TD ( ) Tj 0 -13.44 TD ( ) Tj T* ( ) Tj T* ( ) Tj 0 -13.68 TD /F1 11.68 Tf -0.0102 Tc 0 Tw (Abs) Tj 19.44 0 TD -0.0221 Tc (tract) Tj 24 0 TD 0 Tc -0.04 Tw ( ) Tj -43.44 -13.2 TD /F0 11.68 Tf ( ) Tj 0 -13.32 TD -0.0153 Tc 2.1353 Tw (Standard ) Tj 2.1341 Tc 0 Tw (c) Tj 51.6 0 TD 0.0035 Tc -0.0435 Tw (rossover ) Tj 44.64 0 TD -0.0102 Tc 2.1302 Tw (operators are) Tj 62.64 0 TD 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD -0 Tc 0.0805 Tw (often ) Tj 29.04 0 TD 0.04 Tc 0 Tw (o) Tj 5.88 0 TD -0.0157 Tc 0.0957 Tw (mitted ) Tj 34.92 0 TD -0.0065 Tc 0 Tw (from) Tj 22.56 0 TD 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD -0.0013 Tc 2.1613 Tw (simple genetic algorithms \(GAs\)) Tj 159.24 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0075 Tc 1.2875 Tw (used for optimizing artificial neural networks) Tj 0 Tc -0.04 Tw ( ) Tj 222.12 0 TD -0.001 Tc -0.039 Tw (because ) Tj 41.16 0 TD -0.0245 Tc 1.3045 Tw (of the) Tj 0 Tc -0.16 Tw ( ) Tj 32.4 0 TD -0.0015 Tc 0.0815 Tw (traditional ) Tj 52.32 0 TD -0.0126 Tc 0.0926 Tw (belief ) Tj 30.72 0 TD -0.0091 Tc 1.2891 Tw (that they) Tj 41.76 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD 0.0376 Tc 0 Tw (generally) Tj 43.32 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.0104 Tc -0.0504 Tw (disrupt ) Tj 36.6 0 TD 0.0423 Tc 0 Tw (the) Tj 14.4 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD -0.0201 Tc 0 Tw (distribut) Tj 39 0 TD 0.0132 Tc 1.1468 Tw (ed functionality) Tj 74.64 0 TD 0 Tc -0.04 Tw ( ) Tj 4.2 0 TD -0.0014 Tc 1.1614 Tw (of the evolving solutions) Tj 119.4 0 TD 0.08 Tc 0 Tw (. ) Tj 7.08 0 TD -0.0013 Tc 1.1613 Tw (The notion that) Tj 73.68 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0131 Tc 0 Tw (crossover) Tj 44.64 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0465 Tc 0 Tw (will) Tj 18.24 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.007 Tc -0.047 Tw (be ) Tj 14.4 0 TD 0.0332 Tc 0 Tw (especially) Tj 46.68 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0013 Tc 0.4413 Tw (disruptive when) Tj 75.48 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0259 Tc 0 Tw (a) Tj 5.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0155 Tc 0 Tw (genetic) Tj 33.84 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0029 Tc 0.4829 Tw (representation is used which) Tj 0 Tc -0.04 Tw ( ) Tj 137.52 0 TD -0.0298 Tc 0 Tw (has) Tj 15.6 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0259 Tc 0 Tw (a) Tj 5.16 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD 0.0518 Tc 0 Tw (many) Tj 25.8 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.1365 Tc (to) Tj 9.24 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0108 Tc 3.6308 Tw (one mapping between) Tj 0 Tc -0.04 Tw ( ) Tj 116.28 0 TD -0.079 Tc 0 Tw (genotyp) Tj 37.44 0 TD -0.0259 Tc (e) Tj 5.16 0 TD 0 Tc -0.04 Tw ( ) Tj 6.6 0 TD -0.0199 Tc 3.5799 Tw (and phenotyp) Tj 66.84 0 TD -0.0259 Tc 0 Tw (e) Tj 5.16 0 TD 0 Tc -0.04 Tw ( ) Tj 6.6 0 TD -0.0152 Tc 3.6652 Tw (has become known as the) Tj 0 Tc 0.08 Tw ( ) Tj -286.8 -13.44 TD -0.0099 Tc 0.3299 Tw (\221permutation problem\222) Tj 106.2 0 TD -0.04 Tc 0 Tw (. ) Tj 6.12 0 TD -0.0017 Tc 0.2017 Tw (In contr) Tj 36.84 0 TD 0.0593 Tc 0.2607 Tw (ast, t) Tj 22.32 0 TD 0.0102 Tc 0.1898 Tw (his paper argues) Tj 76.32 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.0181 Tc 0.1819 Tw (that the) Tj 34.92 0 TD -0.0047 Tc 0 Tw (se) Tj 9.72 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0272 Tc 0 Tw (problem) Tj 38.88 0 TD 0.0165 Tc (s) Tj 4.56 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0066 Tc 0.1334 Tw (do not ) Tj 33.12 0 TD -0.0441 Tc 0 Tw (norm) Tj 24.48 0 TD -0 Tc -0.16 Tw (ally ) Tj -402.96 -13.44 TD -0.0168 Tc 1.7768 Tw (appear in) Tj 44.76 0 TD 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD 0 Tc 1.7595 Tw (practical use of) Tj 0 Tc -0.04 Tw ( ) Tj 79.56 0 TD -0 Tc 1.64 Tw (simple GAs) Tj 57.12 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD -0 Tc 1.7602 Tw (because populations converge) Tj 143.64 0 TD 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD 0.0686 Tc 0 Tw (quickly) Tj 35.04 0 TD 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD 0.0144 Tc 1.7456 Tw (and then) Tj 0 Tc 0.2 Tw ( ) Tj -378.72 -13.44 TD -0.0015 Tc 0.4876 Tw (continue to move through search space in this converged manner until a fitness optimum) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD 0.0171 Tc 0.3029 Tw (is found) Tj 38.28 0 TD 0.08 Tc 0 Tw (. ) Tj 6.24 0 TD -0.0159 Tc 0.3359 Tw (After convergenc) Tj 81.48 0 TD -0.0259 Tc -0.0141 Tw (e ) Tj 8.4 0 TD 0.0267 Tc 0.0533 Tw (all ) Tj 15 0 TD -0.007 Tc 0 Tw (i) Tj 3.24 0 TD -0.0045 Tc 0.3845 Tw (ndividuals are geneticall) Tj 114.84 0 TD -0.2 Tc 0.04 Tw (y ) Tj 8.88 0 TD -0.0067 Tc 0 Tw (similar) Tj 32.52 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.022 Tc -0.018 Tw (and ) Tj 20.16 0 TD 0 Tc 0.1997 Tw (moreover, distinct ) Tj -335.16 -13.44 TD 0.0155 Tc 0 Tw (genetic) Tj 33.6 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD 0.012 Tc 2.528 Tw (permutations of the) Tj 96.12 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD -0.0306 Tc 0 Tw (same) Tj 24 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD -0.0066 Tc 0 Tw (phenotypic) Tj 51.84 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD -0.0011 Tc 2.6011 Tw (solution are unlikely to co) Tj 132.48 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0176 Tc 2.5224 Tw (exist in the) Tj 0 Tc -0.04 Tw ( ) Tj -363.96 -13.44 TD 0.003 Tc -0.043 Tw (population. ) Tj 56.52 0 TD 0.005 Tc 0.675 Tw (Genetic ) Tj 0.6941 Tc 0 Tw (c) Tj 45.12 0 TD -0.0074 Tc 0.6874 Tw (onvergence thus) Tj 77.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0302 Tc 0.6498 Tw (minimizes the possibility) Tj 118.92 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0604 Tc 0 Tw (for) Tj 13.68 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0266 Tc 0 Tw (disruption) Tj 47.64 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0123 Tc 0.6677 Tw (caused by) Tj 0 Tc -0.04 Tw ( ) Tj -373.32 -13.44 TD -0.0131 Tc 0 Tw (crossover) Tj 44.64 0 TD -0.04 Tc (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.0636 Tc 1.3436 Tw (We hav) Tj 37.2 0 TD -0.0057 Tc 1.3097 Tw (e termed this the \221convergence argument\222.) Tj 0 Tc -0.04 Tw ( ) Tj 207.72 0 TD 0.0518 Tc 0 Tw (Th) Tj 12.96 0 TD -0.003 Tc 1.323 Tw (is claim is investigated) Tj 0 Tc 0.08 Tw ( ) Tj -309.84 -13.44 TD -0.0077 Tc -0.1523 Tw (experimentally ) Tj 76.8 0 TD 0.0097 Tc 3.9503 Tw (on standard benchmark problems) Tj 0 Tc -0.04 Tw ( ) Tj 174.48 0 TD 0.0302 Tc 3.8898 Tw (and the) Tj 38.04 0 TD 0 Tc -0.04 Tw ( ) Tj 6.96 0 TD -0.0024 Tc 0 Tw (results) Tj 30.48 0 TD 0 Tc -0.04 Tw ( ) Tj 6.96 0 TD 0.0076 Tc 3.9124 Tw (provide empirical) Tj 0 Tc 0.08 Tw ( ) Tj -333.72 -13.44 TD -0 Tc 0 Tw (support) Tj 35.04 0 TD -0.04 Tc (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj -37.92 -13.44 TD ( ) Tj 0 -13.32 TD /F1 11.68 Tf -0.0021 Tc 0 Tw (Keywords:) Tj 54.48 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0 Tc 0 Tw (permutation problem, genetic algorithm, artificial neural network) Tj 304.92 0 TD 0 Tc -0.04 Tw ( ) Tj -362.28 -13.44 TD ( ) Tj 0 -13.68 TD /F1 11.68 Tf ( ) Tj 0 -13.44 TD ( ) Tj T* ( ) Tj T* ( ) Tj T* ( ) Tj T* ( ) Tj T* ( ) Tj T* ( ) Tj T* ( ) Tj T* ( ) Tj T* ( ) Tj 0 -13.2 TD /F0 11.68 Tf ( ) Tj ET endstream endobj 18 0 obj 8836 endobj 16 0 obj << /Type /Page /Parent 5 0 R /Resources << /Font << /F0 6 0 R /F1 19 0 R >> /ProcSet 2 0 R >> /Contents 17 0 R >> endobj 24 0 obj << /Length 25 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj -5.88 688.8 TD /F0 11.68 Tf 0.04 Tc 0 Tw (3) Tj -414.6 -35.88 TD /F1 11.68 Tf 0.06 Tc (1.) Tj 8.76 0 TD /F2 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 8.76 0 TD /F1 11.68 Tf -0.0109 Tc 0 Tw (Introduc) Tj 44.04 0 TD 0.0524 Tc (tion) Tj 19.56 0 TD 0 Tc -0.04 Tw ( ) Tj -81.12 -13.2 TD /F0 11.68 Tf ( ) Tj 0 -13.32 TD -0.0141 Tc -0.0259 Tw (The ) Tj 21.24 0 TD -0.0012 Tc 0 Tw (optimization) Tj 59.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0075 Tc 0.1925 Tw (of artificial neural networks \() Tj 137.76 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 29.88 0 TD -0.0104 Tc 0.2104 Tw (\) by using genetic algorithms ) Tj 140.28 0 TD -0.0494 Tc 0 Tw (\() Tj 3.84 0 TD -0.0165 Tc (GAs) Tj 21.36 0 TD 0.0706 Tc 0.0094 Tw (\) ) Tj -416.52 -13.44 TD -0.0026 Tc 2.2026 Tw (has matured and become an established discipline) Tj 245.88 0 TD -0.0227 Tc 2.2627 Tw (. Indeed, ) Tj 2.273 Tc 0 Tw (t) Tj 51 0 TD -0.0038 Tc 2.2038 Tw (here are many successful) Tj 0 Tc 0.08 Tw ( ) Tj -296.88 -13.44 TD -0.0099 Tc 2.1299 Tw (applications of GAs using) Tj 0 Tc -0.16 Tw ( ) Tj 132.84 0 TD -0.0115 Tc 0 Tw (standard) Tj 39.6 0 TD 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD -0.0131 Tc -0.0269 Tw (crossover ) Tj 49.68 0 TD -0.0157 Tc -0.0243 Tw (operators ) Tj 48.36 0 TD 0.008 Tc 2.112 Tw (to the) Tj 0 Tc -0.04 Tw ( ) Tj 33.36 0 TD -0.0012 Tc 0 Tw (optimization) Tj 59.16 0 TD 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD -0.0047 Tc -0.0353 Tw (of ) Tj 14.64 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 29.88 0 TD -0.04 Tc (. ) Tj -417.6 -13.44 TD -0.033 Tc (N) Tj 8.4 0 TD -0.0049 Tc (evertheless) Tj 51.84 0 TD -0.0039 Tc 0.3839 Tw (, it has) Tj 31.56 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0 Tc 0.0805 Tw (often ) Tj 27.24 0 TD -0.023 Tc 0.103 Tw (been ) Tj 25.2 0 TD -0.0198 Tc 0 Tw (claimed) Tj 36.96 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0 Tc 0.2003 Tw (in the literature ) Tj 75.24 0 TD 0.0023 Tc 0.2277 Tw (that the use of ) Tj 70.08 0 TD -0.0724 Tc 0 Tw (such) Tj 21.36 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0024 Tc -0.0376 Tw (operators ) Tj 46.68 0 TD -0.0039 Tc 0.2039 Tw (can ) Tj -404.28 -13.44 TD 0.067 Tc 0 Tw (ha) Tj 11.04 0 TD -0.053 Tc (ve) Tj 10.92 0 TD 0 Tc -0.04 Tw ( ) Tj 7.08 0 TD -0.0035 Tc 4.2535 Tw (detrimental effects on the evolutiona) Tj 187.92 0 TD -0.0264 Tc 4.4264 Tw (ry process) Tj 51.84 0 TD 0.0118 Tc 4.1882 Tw (. This is ) Tj 4.2941 Tc 0 Tw (a) Tj 57.96 0 TD 0 Tc -0.04 Tw ( ) Tj 7.2 0 TD -0.0525 Tc 0.0125 Tw (concern ) Tj 43.8 0 TD -0 Tc -0.04 Tw (that ) Tj 24.6 0 TD -0.0141 Tc -0.0259 Tw (was ) Tj -402.36 -13.44 TD -0.0051 Tc 0.6851 Tw (particularly prevalent) Tj 0 Tc -0.04 Tw ( ) Tj 104.4 0 TD 0.0165 Tc 0 Tw (in) Tj 9.12 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0096 Tc 0.6896 Tw (the early 1990s) Tj 72.6 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0494 Tc 0 Tw (\() Tj 3.96 0 TD -0.0051 Tc 0.6851 Tw (for an overview) Tj 0 Tc -0.04 Tw ( ) Tj 78.84 0 TD -0.0118 Tc -0.0282 Tw (see ) Tj 18.48 0 TD 0.0153 Tc 0.0647 Tw (Yao, ) Tj 26.04 0 TD 0.01 Tc 0 Tw (1999) Tj 23.28 0 TD -0.0494 Tc (\)) Tj 3.96 0 TD 0.3 Tc 0.38 Tw (, b) Tj 12.36 0 TD 0.0165 Tc 0.0635 Tw (ut ) Tj 12.72 0 TD -0.0212 Tc 0 Tw (which) Tj 28.44 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0698 Tc -0.0902 Tw (has ) Tj -405.12 -13.44 TD -0.0085 Tc 2.2285 Tw (also been commented on more recently \(e.g.) Tj 0 Tc 0.08 Tw ( ) Tj 225.12 0 TD 0.0121 Tc 0 Tw (Garc\355a) Tj 31.2 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0096 Tc 2.2496 Tw (Pedrajas, Ortiz) Tj 71.52 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0028 Tc -0.0428 Tw (Boyer ) Tj 33.84 0 TD 0.033 Tc 0 Tw (&) Tj 9 0 TD 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD 0.007 Tc 0 Tw (Herv\341s) Tj 33.24 0 TD -0.0494 Tc (-) Tj -416.64 -13.44 TD -0.0056 Tc (Mart\355nez) Tj 42 0 TD -0.04 Tc (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD 0.01 Tc 0 Tw (2006) Tj 23.4 0 TD -0.0077 Tc 1.0777 Tw (; Stanley & Miikkulainen, 2002\)) Tj 156.12 0 TD -0.04 Tc 0 Tw (. ) Tj 6.96 0 TD -0.0183 Tc 1.1183 Tw (The source of this belief can generally) Tj 0 Tc -0.16 Tw ( ) Tj -235.44 -13.44 TD -0 Tc 1.5201 Tw (be traced to a combination of two factors, namely \(i\) the observation that) Tj 0 Tc -0.04 Tw ( ) Tj 363.6 0 TD -0.012 Tc 1.532 Tw (ANNs store) Tj 0 Tc -0.04 Tw ( ) Tj -363.6 -13.44 TD -0 Tc 1.4006 Tw (their knowledge in a distributed fashion, and \(ii\)) Tj 0 Tc 0.08 Tw ( ) Tj 239.88 0 TD 0.0015 Tc 1.3985 Tw (false assumptions about the nature of) Tj 0 Tc 0.08 Tw ( ) Tj -239.88 -13.44 TD -0.0069 Tc 0.0735 Tw (genetic convergence in evolutionary search \(cf. Harvey & Thompson, 1996\)) Tj 356.52 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj -359.4 -13.44 TD ( ) Tj 0 -13.44 TD -0.0049 Tc 0.6209 Tw (It is a well known fact that the functionality of a standard ANN is distributed ) Tj 0.52 Tc 0 Tw (o) Tj 377.16 0 TD -0.0106 Tc 0.6306 Tw (ver all of) Tj 0 Tc -0.04 Tw ( ) Tj -377.16 -13.44 TD 0.0808 Tc 0 Tw (its) Tj 11.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0068 Tc 0.1211 Tw (nodes, connections and their weights \(Yao, 1999\). ) Tj 238.2 0 TD -0.003 Tc 0.083 Tw (It is therefore possible that different ) Tj -252.36 -13.44 TD -0.0014 Tc 0.2383 Tw (arrangements of weights and connectivity can produce the same kind of overall behavior. ) Tj 0 -13.32 TD -0.0016 Tc 0 Tw (Moreover,) Tj 48.84 0 TD 0 Tc -0.04 Tw ( ) Tj 5.4 0 TD -0.0109 Tc 2.4709 Tw (in standard ANNs the same set of) Tj 0 Tc -0.04 Tw ( ) Tj 177 0 TD -0.0019 Tc 0 Tw (nodes) Tj 27.24 0 TD 0 Tc -0.04 Tw ( ) Tj 5.4 0 TD -0.0476 Tc 2.5276 Tw (can be) Tj 0 Tc -0.16 Tw ( ) Tj 37.8 0 TD -0.0309 Tc 0 Tw (arrange) Tj 35.04 0 TD 0.04 Tc (d) Tj 5.88 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD -0.0031 Tc 2.4031 Tw (in a variety of) Tj 0 Tc -0.04 Tw ( ) Tj -348.12 -13.44 TD -0.0026 Tc 0.4854 Tw (equivalent permutations since the order of nodes has no effect on the functionality of the) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.0013 Tc 0.4585 Tw (corresponding ANN \(Whitley, 1995\). It has also been shown that the number of possible ) Tj T* -0.0042 Tc 0.4613 Tw (equivalent architectures grows exponentially with the number ) Tj 295.08 0 TD -0.0131 Tc 0.6131 Tw (of hidden nodes \(Schaffer,) Tj 0 Tc -0.04 Tw ( ) Tj -295.08 -13.44 TD -0.0155 Tc 4.7755 Tw (Whitley & Eshelman, 1992\).) Tj 148.56 0 TD -0.0682 Tc 0 Tw (Th) Tj 12.96 0 TD -0.0259 Tc (e) Tj 5.16 0 TD 0 Tc -0.04 Tw ( ) Tj 7.68 0 TD -0.0017 Tc -0.0383 Tw (genetic ) Tj 41.28 0 TD -0.0118 Tc 4.7318 Tw (redundancy caused by th) Tj 129.72 0 TD 0.0047 Tc 0 Tw (is) Tj 7.8 0 TD 0 Tc -0.04 Tw ( ) Tj 7.68 0 TD 0.0818 Tc 0 Tw (many) Tj 25.8 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0165 Tc (to) Tj 9.24 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.018 Tc 0.062 Tw (one ) Tj -403.56 -13.44 TD -0.001 Tc 0.7476 Tw (mapping from genotype to phenotype means that two functionally equivalent) Tj 0 Tc -0.04 Tw ( ) Tj 370.68 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 30 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.1239 Tc 0 Tw (can) Tj 16.2 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0037 Tc 0.0237 Tw (have very different genetic representations) Tj 199.08 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0195 Tc 0.0595 Tw (as shown in Fig.) Tj 76.44 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.04 Tc 0 Tw (1) Tj 5.76 0 TD 0.08 Tc (. ) Tj 6 0 TD 0 Tc -0.04 Tw ( ) Tj -293.16 -13.44 TD ( ) Tj ET q 195.6 0 0 -63.12 136.2 399.84 cm /im2 Do endstream endobj 25 0 obj 7905 endobj 27 0 obj << /Type /XObject /Subtype /Image /Name /im2 /Width 335 /Height 108 /BitsPerComponent 8 /ColorSpace [ /Indexed /DeviceRGB 255 26 0 R ] /Length 28 0 R >> stream        $        $                                                                                  #          "     !                       #  " !                                                                                                                                                                                                                                                     endstream endobj 28 0 obj 36180 endobj 26 0 obj << /Length 29 0 R /Filter /ASCII85Decode >> stream !!!$!s8W,6F8u;3SDX?;SDXA(S4EWN!!%,Us8W-!^N9HHF8u;_^]32]8,u2NhuE^I !!*'!hjd4;8-!`3FMGS4!(]YNS=E,@FEG:thjd5ZhnQpr84Z9n^N9HtFI\j$84^MQ S9.;l8=[Epzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz~> endstream endobj 29 0 obj 314 endobj 33 0 obj << /Length 34 0 R >> stream Q BT 331.8 336.72 TD ( ) Tj 14.64 0 TD ( ) Tj ET q 78.84 0 0 -58.44 381.48 395.16 cm /im3 Do endstream endobj 34 0 obj 98 endobj 31 0 obj << /Type /XObject /Subtype /Image /Name /im3 /Width 135 /Height 100 /BitsPerComponent 8 /ColorSpace [ /Indexed /DeviceRGB 255 30 0 R ] /Length 32 0 R >> stream      C  "  !I G VH !&A *K"A,&IA A& !IU J A U  "A& !IUA *"R I & G!HS!I !&  A  " I"  CA S!IT  H B&  9-  ?   ,&  L&  $"#6"#  4Q- /& ?  & &R  /&    && D#N /& .    &  =  &"#$"#6 = > <& /&  1& 6"&3 /& !1 & #& ;+ /& 1 &  '(9: /&" 1 &6 23456 /& 1 &  78)*+",-. /& 0 1& &     !"#$"#  %& '(      endstream endobj 32 0 obj 13500 endobj 30 0 obj << /Length 35 0 R /Filter /ASCII85Decode >> stream !!!$!s8W-!bcRk+1M3'!s8Ol2B(+;q 1G`Xes3/\,*#tCHs8U;T!!$W!R54h!1M16e.4H]%AnGX2R8$CMbaE(ebfn;!baE'T lK[ZM^qf-rf)M-@As8U;TAi'Je endstream endobj 35 0 obj 466 endobj 38 0 obj << /Length 39 0 R >> stream Q BT 460.32 336.72 TD ( ) Tj -372.24 -10.8 TD /F1 11.68 Tf ( ) Tj 0 -13.08 TD 0.0038 Tc 6.6762 Tw (Figure 1.) Tj 51.36 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 9.72 0 TD -0.0077 Tc 6.7927 Tw (\(a\) Two functionally equivalent ANNs; \(b\) their differing genetic) Tj 0 Tc 0.08 Tw ( ) Tj -61.08 -13.44 TD 0 Tc 1.0597 Tw (representation. Each weight is represented by an integer where 0 implies no connection) Tj 0 Tc 0.2 Tw ( ) Tj 0 -13.44 TD -0.0092 Tc 0.0549 Tw (\(fig. adapted from Yao and Liu, 1997\). ) Tj 184.92 0 TD 0 Tc -0.04 Tw ( ) Tj -184.92 -13.44 TD ( ) Tj 0 -13.44 TD -0.0141 Tc -0.0259 Tw (The ) Tj 25.44 0 TD /F3 11.68 Tf -0.0018 Tc 4.4018 Tw (permutation problem) Tj 103.32 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 7.32 0 TD -0.0075 Tc 4.4075 Tw (\(Radcliffe, 1990\)) Tj 84.84 0 TD 0 Tc -0.04 Tw ( ) Tj 7.32 0 TD 0.0019 Tc 0 Tw (holds) Tj 25.32 0 TD 0 Tc -0.04 Tw ( ) Tj 7.32 0 TD 0.1365 Tc 0 Tw (th) Tj 9.12 0 TD -0.0165 Tc -0.0235 Tw (at ) Tj 15.84 0 TD -0.0324 Tc 4.5524 Tw (evolved structures) Tj 89.4 0 TD 0 Tc -0.04 Tw ( ) Tj 7.44 0 TD -0.0839 Tc 0 Tw (can) Tj 16.08 0 TD 0 Tc -0.04 Tw ( ) Tj 7.44 0 TD 0.0023 Tc 0.0777 Tw (get ) Tj -406.2 -13.44 TD -0.0075 Tc 2.4075 Tw (seriously disrupted by applying) Tj 0 Tc -0.04 Tw ( ) Tj 159.24 0 TD -0.0265 Tc 0 Tw (standard) Tj 39.48 0 TD 0 Tc -0.04 Tw ( ) Tj 5.28 0 TD -0.0067 Tc 2.3667 Tw (crossover between the two) Tj 131.16 0 TD 0 Tc -0.04 Tw ( ) Tj 5.28 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 29.88 0 TD 0 Tc -0.04 Tw ( ) Tj 5.28 0 TD 0.0024 Tc 2.3576 Tw (shown in) Tj 0 Tc 0.08 Tw ( ) Tj -375.6 -13.44 TD -0.0202 Tc 0.1002 Tw (Fig.1 ) Tj 28.56 0 TD 0.0013 Tc 1.4227 Tw (because their genotypes are incompatible even though their phenotypes might be) Tj 0 Tc 0.08 Tw ( ) Tj -28.56 -13.44 TD -0.0083 Tc 0 Tw (indistinguishable) Tj 79.68 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD -0.0049 Tc 2.6049 Tw (by the fitness function) Tj 111.96 0 TD -0.04 Tc 0 Tw (. ) Tj 8.4 0 TD 0.017 Tc 2.583 Tw (This issue) Tj 49.68 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD 0.0466 Tc 2.4334 Tw (is als) Tj 26.28 0 TD -0.08 Tc 0.04 Tw (o ) Tj 11.28 0 TD -0.0052 Tc -0.0348 Tw (sometimes ) Tj 55.44 0 TD -0.0115 Tc 2.6115 Tw (known as the) Tj 0 Tc -0.04 Tw ( ) Tj -353.76 -13.44 TD /F3 11.68 Tf 0.0033 Tc 3.9167 Tw (competing conventions) Tj 111.36 0 TD 0 Tc -0.04 Tw ( ) Tj 6.84 0 TD -0.0071 Tc -0.0329 Tw (problem ) Tj 45.84 0 TD /F0 11.68 Tf -0.0152 Tc 4.0852 Tw (\(Schaffer, Whitley & Eshelman, 1992\)) Tj 196.68 0 TD -0.04 Tc 0 Tw (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 6.84 0 TD /F3 11.68 Tf 0.0122 Tc 0 Tw (structural) Tj 46.2 0 TD -0.0494 Tc (-) Tj -416.64 -13.44 TD -0.0032 Tc 1.0432 Tw (functional mapping) Tj 92.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD -0.0071 Tc 0 Tw (problem) Tj 38.88 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD 0 Tc 1.0999 Tw (\(Whitley, Starkweather & Bogart, 1990\)) Tj 193.08 0 TD 0.0335 Tc 1.1265 Tw (, and) Tj 0 Tc 0.08 Tw ( ) Tj 27.96 0 TD /F3 11.68 Tf 0.0009 Tc -0.0409 Tw (isomorphism ) Tj -360.12 -13.44 TD -0.0071 Tc 0 Tw (problem) Tj 38.88 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0022 Tc 0.6778 Tw (\(Hancock, 1992\)) Tj 79.08 0 TD -0.04 Tc 0 Tw (.) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0019 Tc 0.5581 Tw (An illustration) Tj 0 Tc -0.04 Tw ( ) Tj 71.88 0 TD -0.0047 Tc -0.0353 Tw (of ) Tj 13.2 0 TD 0.0157 Tc -0.0557 Tw (how ) Tj 23.64 0 TD 0.0023 Tc -0.0423 Tw (the ) Tj 17.76 0 TD -0.0045 Tc 0.0845 Tw (permutation ) Tj 59.88 0 TD -0.0353 Tc 0 Tw (probl) Tj 24.72 0 TD -0.0565 Tc 0.1365 Tw (em ) Tj 17.76 0 TD -0.0199 Tc 0.6999 Tw (may manifest) Tj 0 Tc -0.04 Tw ( ) Tj -356.76 -13.44 TD 0.0062 Tc -0.0462 Tw (itself is) Tj 34.08 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0047 Tc 0.0847 Tw (presented in Fig) Tj 75 0 TD -0.04 Tc 0 Tw (.) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.06 Tc 0 Tw (2.) Tj 8.76 0 TD 0 Tc -0.04 Tw ( ) Tj -109.44 -13.44 TD ( ) Tj ET endstream endobj 39 0 obj 4092 endobj 21 0 obj << /Type /Page /Parent 5 0 R /Resources << /Font << /F0 6 0 R /F1 19 0 R /F2 22 0 R /F3 36 0 R >> /XObject << /im2 27 0 R /im3 31 0 R >> /ProcSet 2 0 R >> /Contents [ 24 0 R 33 0 R 38 0 R ] >> endobj 44 0 obj << /Length 45 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj -5.88 688.8 TD /F0 11.68 Tf 0.04 Tc 0 Tw (4) Tj ET q 134.4 0 0 -75.96 144.36 735.6 cm /im4 Do endstream endobj 45 0 obj 419 endobj 42 0 obj << /Type /XObject /Subtype /Image /Name /im4 /Width 230 /Height 130 /BitsPerComponent 8 /ColorSpace [ /Indexed /DeviceRGB 255 41 0 R ] /Length 43 0 R >> stream nop噛rstuvnowxyz倂z唫vr~|ptw僼u亅z倂ptp厊r~|uowxyp亅uow僼r~|uoptrvw亅z倂z{|w}r~|nowxyrstuvnopq+!j& 3ja:$O a#7:#7:#[a"#[G!"#kO '!Jl +>#$)#$*,el 7#,>$)#$*,$*,#@FQ=*`1-C1-C=C71$C701-0NE[GE[L.71-HT-J1EKX 1$K4+!N#$K":JT7:#7:7"#"#"#J>#$g g '!$*,$*Q1-C =*`1$*B$C71$C7=C71$DT-.71-.N.71UNV4-WN 1hc+!$ +::J a7:#7:7"#"#"#J()$A#>$]>$)#$* +,#-C =*Q1$*Be(a01$C7=C71$DT$STU(4-.71-0Ibc 1#V3+!56-K4#J:$a#$("#J7$Z!J7:7"#"#"#J\>$%W)J<")#$*,@AB-CN$^Q=*7N-C1$*T04$STEC71$[T-U(N-ST-. W3-bc 1#V3+!$KN#JW XTY !$O +:#70 Z8&+"#"#[G!U"#-A-]C>#$*,-C1$^ I_$C7(`S &Q1$C7^ 24.K&71.(4UAL$DGEAL-.71-HG-. 1 1$N+!$KN#7"#JOP7"#JOQ7"#J7>R#$*,-C1-C71$STU(4-.7.71-.71UNV4-J  1J +!567"#-89:#-8;"#-8#?(>#$*,@AB-C71-.(4$D1EFG-.71-HI-J1EKL 1$KM !"#"#$%& '!( )$)#$* +,#-. /-01-. 21- 3 &4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      endstream endobj 43 0 obj 29900 endobj 41 0 obj << /Length 46 0 R /Filter /ASCII85Decode >> stream !!!$!s8Pef9dqM?6:+!Y*#s]fL@Og(^qd`m?XGfR3=H<)R@0HG"9b$VQH[Rsj5]03 AnKlTh(piC;FMIkU^N9Ht^]4>KF9$Ets8TiU!(`X; s8W-!hjd5.SDX>HFMDnt84W`&F8u:@!(`VN!!!"@8,rW\!(]YN^IUnczzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzz~> endstream endobj 46 0 obj 620 endobj 50 0 obj << /Length 51 0 R >> stream Q BT 278.76 659.64 TD 0 Tc -0.04 Tw ( ) Tj 5.76 0 TD ( ) Tj ET q 132.6 0 0 -74.76 319.56 734.4 cm /im5 Do endstream endobj 51 0 obj 113 endobj 48 0 obj << /Type /XObject /Subtype /Image /Name /im5 /Width 227 /Height 128 /BitsPerComponent 8 /ColorSpace [ /Indexed /DeviceRGB 255 47 0 R ] /Length 49 0 R >> stream lmn剎rsptulmvwxy乽no|儃r}{nopn~mvpy乽nopn倇y乽tmvwxnopy乵tmvpn倇y乽tmnopn~vpy乽yz{no|ur}{lmnopvwxrspnoptulmnopnq9*\ !"a"##& N$# $% T@"()' $)*.#9i!, (, (D._(-01(2032032$1(GEY1Hj6HO45$1(k 64J@/97:4`\ !"a"##(' G]#$% T0VTgh% 9$#, R,(, (DE14F$_(-01(2032032$2:H=I 4J145$145:4J 1H;\4>1K;/M8 7:!"a"#"UI$# $% $% ('c% (=B1(O?d"FQ6(-E3-01(2032032$HTe(2$1(GI 45$1(G$ =/45 :>14Wf!"!"a"#"U@"(Q# $% TbV% (=B1(OSB"(, (-0 (-01(2032032$HT@45Q1(G$145$1(G145$14>1(:W[ : a"#"U@"$# $% 9$#4)+"% , ,(R,(, (?^(-E1(2032032$HT@(2$1(GI 45$1(G$ 4JI4>1 `/W[ (\ 9>"##% G]#$% ()' 9$#()*@"(A7+ CB%, (?^4S_(-0K2032$J1H=I HTI45$1(GI4JI4>1 `/!">7/ ##& N$# $% T@"U0VT@"% W0#9Q,4X2, (-0 (2-$:(2032$1(GEY145)/HO 5$1H)Z5$14>1(:M8 9>"!"#$# 9 N$# $5% % (=B1(OB1&AP, FQ6(-R(-01(2$1(2$1(SIH)/KG B$14SIK=/=/4J> >149> 97:4;< !"#$# 4=>#=?@#% 9,(AB1, C), (DE14F$/(-01(2$1(2$145)/(G1H;I H)/4J14J 1KL84>1K; !"##$# $% &' ()*' )+ (, (-./(-01(2032$1(2$145645$145 64578/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               endstream endobj 49 0 obj 29056 endobj 47 0 obj << /Length 52 0 R /Filter /ASCII85Decode >> stream !!!$!s8TmM^c=D81G^gR6:.u`Z;"%f"9\jXJ:JUZ*0unVnaZ.(L5'nrGN7`DKF9"k%huE`V s50>;8=\T;S=E,l!(]W\!!%,U!!%,28,u0\8,rW\84]6Nzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzz~> endstream endobj 52 0 obj 612 endobj 53 0 obj << /Length 54 0 R >> stream Q BT 452.16 659.64 TD ( ) Tj -364.08 -10.68 TD /F1 11.68 Tf ( ) Tj 0 -13.2 TD -0.0149 Tc -0.0251 Tw (Figure ) Tj 36.24 0 TD 0.04 Tc 0 Tw (2) Tj 5.76 0 TD -0.04 Tc (.) Tj 3.12 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.0089 Tc 0.1311 Tw (Recombination of ) Tj 87.72 0 TD -0.0206 Tc 0 Tw (ANNs) Tj 29.76 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.003 Tc 0.302 Tw (with localized receptor fields: \(a\) parents selected for ) Tj -169.08 -13.44 TD -0.022 Tc 0 Tw (one) Tj 16.8 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0082 Tc 0.7918 Tw (point crossover between the ) Tj 0.76 Tc 0 Tw (2) Tj 142.92 5.4 TD /F0 7.8256 Tf 0.0472 Tc (nd) Tj 7.92 -5.4 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.022 Tc 0.822 Tw (and ) Tj 0.76 Tc 0 Tw (3) Tj 26.4 5.4 TD /F0 7.8256 Tf 0.0406 Tc (rd) Tj 6.6 -5.4 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD 0 Tc 0.8396 Tw (node definitions, and \(b\) each offspring has) Tj 0 Tc -0.04 Tw ( ) Tj -212.04 -13.44 TD 0.0193 Tc 1.6207 Tw (two copies of similar re) Tj 117 0 TD 0.0059 Tc 1.6341 Tw (ceptor fields and does not cover the whole functionality of its) Tj 0 Tc -0.04 Tw ( ) Tj -117 -13.44 TD -0.0247 Tc 0 Tw (parent) Tj 29.04 0 TD 0.0381 Tc 0.0419 Tw (s \(fig) Tj 24.36 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0101 Tc 0.0301 Tw (adapted from ) Tj 64.92 0 TD -0.0038 Tc 0.0838 Tw (Hancock, ) Tj 47.28 0 TD 0.01 Tc 0 Tw (1992) Tj 23.52 0 TD -0.0447 Tc (\).) Tj 6.84 0 TD 0 Tc -0.04 Tw ( ) Tj -201.84 -13.44 TD ( ) Tj 0 -13.44 TD -0.0565 Tc 0 Tw (T) Tj 7.08 0 TD 0.0018 Tc 0.2782 Tw (he permutation problem ) Tj 116.52 0 TD 0.0047 Tc 0 Tw (is) Tj 7.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.0081 Tc -0.0481 Tw (sometimes ) Tj 53.4 0 TD 0.0018 Tc 0.4382 Tw (cited as a reason for using purely mutation based ) Tj -188.16 -13.44 TD -0.0097 Tc 0 Tw (approaches) Tj 52.44 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD -0.0129 Tc 2.2729 Tw (\(e.g. Yao, 1999; Yao & Liu, 1997\),) Tj 178.44 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD -0.0115 Tc 2.2515 Tw (as well as) Tj 49.8 0 TD 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD -0.0643 Tc 2.4243 Tw (a mo) Tj 25.32 0 TD -0.0051 Tc 2.2451 Tw (tivation for devising) Tj 0 Tc -0.04 Tw ( ) Tj -321.36 -13.44 TD 0.0056 Tc 2.4144 Tw (special genetic representations) Tj 0 Tc -0.04 Tw ( ) Tj 153.12 0 TD -0.0137 Tc 0 Tw (and/or) Tj 29.76 0 TD 0 Tc -0.04 Tw ( ) Tj 5.4 0 TD 0.0136 Tc 0.0664 Tw (crossover ) Tj 50.28 0 TD -0.029 Tc 0 Tw (operators) Tj 43.44 0 TD 0 Tc -0.04 Tw ( ) Tj 5.28 0 TD 0.0823 Tc 0 Tw (\(c) Tj 9.12 0 TD 0.0153 Tc 0.0647 Tw (f. ) Tj 12.24 0 TD 0.0044 Tc 0.0756 Tw (section ) Tj 38.52 0 TD -0.0324 Tc 0 Tw (2.1\)) Tj 18.48 0 TD -0.04 Tc (. ) Tj 8.4 0 TD -0.0373 Tc (Indeed,) Tj 34.56 0 TD 0 Tc -0.04 Tw ( ) Tj 5.4 0 TD -0.007 Tc 0 Tw (i) Tj 3.24 0 TD -0.033 Tw (t ) Tj -417.24 -13.44 TD -0.0034 Tc 2.2434 Tw (appears that \223the prospect of evolving connectionist networks with crossover appears) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.0056 Tc 0.4856 Tw (limited in general, and better results should be expected wi) Tj 279.12 0 TD 0.0078 Tc 0.3122 Tw (th reproduction heuristics that ) Tj -279.12 -13.44 TD 0.0069 Tc 0.1588 Tw (respect the uniqueness of the distributed representations\224 ) Tj 271.32 0 TD -0.0065 Tc 0.2965 Tw (\(Angeline, Saunders & Pollack, ) Tj -271.32 -13.32 TD 0.0221 Tc 0 Tw (1994\)) Tj 27.24 0 TD -0.04 Tc (. ) Tj 6.84 0 TD -0.2459 Tc (We) Tj 16.08 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0076 Tc 0.8224 Tw (note that these claims are) Tj 0 Tc 0.08 Tw ( ) Tj 125.28 0 TD 0 Tc 0.7993 Tw (based on) Tj 0 Tc -0.04 Tw ( ) Tj 45.84 0 TD -0.008 Tc 0.928 Tw (theoretical arguments) Tj 101.76 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0047 Tc 0.8047 Tw (following the ) Tj 0.7906 Tc 0 Tw (f) Tj 70.92 0 TD 0.0478 Tc 0.0322 Tw (orm ) Tj -401.52 -13.44 TD 0.0016 Tc 3.8784 Tw (of those presented in Fig. 1 and) Tj 0 Tc 0.08 Tw ( ) Tj 177.12 0 TD 0.04 Tc 0 Tw (2) Tj 5.76 0 TD -0.04 Tc (.) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 6.84 0 TD -0.0111 Tc -0.0289 Tw (Studies ) Tj 41.28 0 TD -0.0298 Tc 0 Tw (spe) Tj 15.48 0 TD -0.0128 Tc -0.2672 Tw (cifically ) Tj 45 0 TD 0.01 Tc 0 Tw (investigating) Tj 60.36 0 TD 0 Tc -0.04 Tw ( ) Tj 6.84 0 TD 0.0186 Tc 3.7814 Tw (whether the) Tj 0 Tc 0.08 Tw ( ) Tj -361.68 -13.44 TD -0.0122 Tc 2.4922 Tw (permutation problem) Tj 0 Tc -0.04 Tw ( ) Tj 105.96 0 TD 0.0341 Tc 2.4459 Tw (has any) Tj 37.8 0 TD 0 Tc -0.04 Tw ( ) Tj 5.4 0 TD 0.0032 Tc 2.4768 Tw (practical implications) Tj 0 Tc -0.04 Tw ( ) Tj 108.84 0 TD -0.0338 Tc 0 Tw (are) Tj 14.16 0 TD 0 Tc -0.04 Tw ( ) Tj 5.4 0 TD -0.0075 Tc -0.2725 Tw (relatively ) Tj 49.32 0 TD 0.037 Tc 0 Tw (limited) Tj 33.36 0 TD -0.04 Tc (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 5.4 0 TD -0.0165 Tc 2.4965 Tw (This paper) Tj 0 Tc -0.04 Tw ( ) Tj -368.52 -13.44 TD -0.0029 Tc 1.3229 Tw (investigates ANN weight optimization,) Tj 0 Tc -0.04 Tw ( ) Tj 191.04 0 TD 0.0054 Tc 1.3946 Tw (Hancock \(1992\)) Tj 76.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.2 0 TD -0.0034 Tc 0 Tw (studied) Tj 33.72 0 TD 0 Tc -0.04 Tw ( ) Tj 4.2 0 TD 0.0165 Tc 0.0635 Tw (structural ) Tj 48.48 0 TD -0.0012 Tc 0 Tw (optimization) Tj 59.04 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD 0.018 Tc 0 Tw (and) Tj 16.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.0321 Tc 0 Tw (Garc\355a) Tj 31.08 0 TD -0.0494 Tc (-) Tj 3.96 0 TD 0.0247 Tc 0.2953 Tw (Pedrajas, Ortiz) Tj 69.84 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0212 Tc -0.0188 Tw (Boyer ) Tj 31.8 0 TD 0.018 Tc 0 Tw (and) Tj 16.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.013 Tc 0 Tw (Herv\341s) Tj 33 0 TD -0.0494 Tc (-) Tj 3.96 0 TD 0.0235 Tc (Mart) Tj 22.8 0 TD -0.0047 Tc -0.0353 Tw (\355nez ) Tj 22.68 0 TD 0.0102 Tc -0.0502 Tw (\(2006\) ) Tj 34.44 0 TD 0.0072 Tc 0.0728 Tw (have recently ) Tj 66.24 0 TD 0.0412 Tc 0 Tw (investig) Tj 36.96 0 TD 0.0253 Tc 0.1747 Tw (ated ) Tj -400.92 -13.44 TD -0.0022 Tc 1.6622 Tw (a combination of structure and weight evolution) Tj 234.36 0 TD 0.08 Tc 0 Tw (. ) Tj 7.56 0 TD -0.0025 Tc 1.6725 Tw (It is worth emphasizing that) Tj 0 Tc 0.08 Tw ( ) Tj 141.48 0 TD -0.0065 Tc 0 Tw (none) Tj 22.68 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD 0.0553 Tc 0.0247 Tw (of ) Tj -410.64 -13.44 TD -0 Tc -0.0395 Tw (these ) Tj 27 0 TD -0.0018 Tc -0.0382 Tw (experimental ) Tj 63.96 0 TD 0.0104 Tc -0.0504 Tw (studies ) Tj 35.52 0 TD 0.0102 Tc -0.0502 Tw (has ) Tj 18.6 0 TD -0.0019 Tc 0.0819 Tw (found ) Tj 30.24 0 TD 0.098 Tc 0 Tw (any) Tj 16.68 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0225 Tc 0 Tw (significant) Tj 49.56 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0148 Tc -0.0252 Tw (detrimental ) Tj 56.16 0 TD 0.0029 Tc 0.0171 Tw (effects attributable to the ) Tj -303.72 -13.44 TD -0.001 Tc 0.081 Tw (permutation problem.) Tj 101.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0094 Tc 0.2094 Tw (Accordingly, ther) Tj 82.56 0 TD 0.0114 Tc 0.0686 Tw (e is a need to reevaluate the traditional theoretical ) Tj -186.96 -13.44 TD -0.0076 Tc 0.0156 Tw (claims with regard to this problem.) Tj 163.56 0 TD 0 Tc -0.04 Tw ( ) Tj -163.56 -13.44 TD ( ) Tj 0 -13.44 TD 0.0068 Tc 1.7532 Tw (At first sight this) Tj 84.24 0 TD 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD -0.0041 Tc 1.7641 Tw (lack of empirical evidence) Tj 0 Tc -0.04 Tw ( ) Tj 133.56 0 TD -0.0195 Tc 1.8395 Tw (may seem odd) Tj 71.04 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD 0.0078 Tc 1.7522 Tw (in particular because) Tj 100.32 0 TD 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD 0.0023 Tc -0.0423 Tw (the ) Tj -406.2 -13.44 TD 0.0047 Tc 1.4153 Tw (permutation problem appears to encapsulate the reasonable) Tj 0 Tc 0.08 Tw ( ) Tj 289.44 0 TD 0.0414 Tc 0 Tw (claim) Tj 25.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD 0.0135 Tc 1.3865 Tw (that it usuall) Tj 60.84 0 TD -0.0271 Tc 1.5471 Tw (y makes) Tj 0 Tc 0.08 Tw ( ) Tj -380.52 -13.44 TD 0.006 Tc 0.554 Tw (little sense to recombine) Tj 0 Tc -0.04 Tw ( ) Tj 119.28 0 TD -0 Tc 0.5607 Tw (individuals who are) Tj 0 Tc -0.16 Tw ( ) Tj 96.96 0 TD -0.012 Tc -0.148 Tw (genetically ) Tj 54.6 0 TD 0.0012 Tc -0.2812 Tw (very ) Tj 24.36 0 TD 0 Tc 0 Tw (dissimilar) Tj 46.08 0 TD -0.0237 Tc 0.7837 Tw (. As Watson and) Tj 0 Tc 0.08 Tw ( ) Tj -341.28 -13.44 TD -0.0058 Tc 0.8058 Tw (Pollack \(2000\) point out:) Tj 119.52 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0048 Tc 0.8048 Tw (\223parents selected from two different fitness peaks are likely to) Tj 0 Tc 0.2 Tw ( ) Tj -123.24 -13.44 TD -0.0143 Tc 1.0943 Tw (produce an offspring that lands in the valley in between\224.) Tj 0 Tc 0.08 Tw ( ) Tj 281.16 0 TD -0.0578 Tc 1.0978 Tw (While we) Tj 0 Tc -0.16 Tw ( ) Tj 49.68 0 TD -0.0091 Tc 1.1091 Tw (agree with Watson) Tj 0 Tc 0.2 Tw ( ) Tj -330.84 -13.32 TD -0.0095 Tc 1.3095 Tw (and Pollack\222s observation, we further note that) Tj 0 Tc 0.08 Tw ( ) Tj 229.92 0 TD -0.0194 Tc 1.3234 Tw (this situation is unlikely to occur) Tj 0 Tc -0.04 Tw ( ) Tj 162.96 0 TD 0.008 Tc 1.272 Tw (in the) Tj 0 Tc -0.04 Tw ( ) Tj -392.88 -13.44 TD 0.0023 Tc 1.9977 Tw (case of real world applications of standard GAs) Tj 236.4 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD 0.0089 Tc 1.9511 Tw (This is because ) Tj 2.033 Tc 0 Tw (i) Tj 83.52 0 TD 0.0408 Tc 1.9592 Tw (t is) Tj 0 Tc -0.04 Tw ( ) Tj 20.88 0 TD 0.0198 Tc 0 Tw (improbable) Tj 53.28 0 TD 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD 0.0204 Tc -0.0604 Tw (for ) Tj -406.8 -13.44 TD -0.0283 Tc 0 Tw (several) Tj 33 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0051 Tc 0.2051 Tw (different fitness peaks) Tj 103.56 0 TD -0.04 Tc 0 Tw (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0073 Tc 0.1593 Tw (or permutations of the same ) Tj 134.16 0 TD 0.0229 Tc 0.1771 Tw (fitness peak) Tj 55.68 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0182 Tc 0.2182 Tw (to co) Tj 23.28 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0056 Tc 0.0344 Tw (exist in the ) Tj -368.88 -13.44 TD -0.0033 Tc 1.5233 Tw (same population during) Tj 0 Tc -0.04 Tw ( ) Tj 117.96 0 TD -0.0102 Tc -0.1498 Tw (evolutionary ) Tj 63.48 0 TD -0.0318 Tc 0 Tw (search) Tj 29.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.0359 Tc 0 Tw (sinc) Tj 18.84 0 TD 0.0048 Tc 1.5152 Tw (e populations converge) Tj 0 Tc 0.08 Tw ( ) Tj 116.04 0 TD -0.0171 Tc -0.1429 Tw (quickly ) Tj 39.36 0 TD 0.04 Tc 0 Tw (on) Tj 11.64 0 TD 0.1365 Tc (to) Tj 9.24 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.0259 Tc -0.0141 Tw (a ) Tj -415.32 -13.44 TD 0.0024 Tc 2.6936 Tw (small region of genotypic search space) Tj 194.76 0 TD -0.04 Tc 0 Tw (. ) Tj 8.64 0 TD -0.003 Tc 2.603 Tw (Indeed, ) Tj 2.633 Tc 0 Tw (i) Tj 43.56 0 TD 0.0021 Tc 2.6879 Tw (t has been shown that) Tj 111.24 0 TD 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD 0.0076 Tc 2.6524 Tw (even in the) Tj 0 Tc 0.08 Tw ( ) Tj -363.84 -13.44 TD -0.0093 Tc 2.9293 Tw (absence of selective pressure) Tj 143.76 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD -0.036 Tc 0 Tw (genetic) Tj 33.48 0 TD 0 Tc -0.04 Tw ( ) Tj 5.88 0 TD -0.0259 Tc 0 Tw (converge) Tj 42.84 0 TD -0.0265 Tc 2.9865 Tw (nce typic) Tj 45.36 0 TD -0.0245 Tc 2.8645 Tw (ally occurs) Tj 53.64 0 TD 0 Tc -0.04 Tw ( ) Tj 5.88 0 TD -0.0019 Tc 2.9019 Tw (during the initial) Tj 0 Tc -0.04 Tw ( ) Tj -336.84 -13.44 TD -0.0077 Tc 0 Tw (generations) Tj 53.76 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.0137 Tc 1.5737 Tw (through random genetic drift) Tj 0 Tc -0.04 Tw ( ) Tj 143.4 0 TD -0.0086 Tc 1.5286 Tw (\(Asoh & Muehlenbein, 1994\)) Tj 142.56 0 TD -0.04 Tc 0 Tw (.) Tj 3.12 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.0309 Tc -0.0091 Tw (However, ) Tj 49.92 0 TD 0.0288 Tc 1.4912 Tw (it is) Tj 0 Tc -0.04 Tw ( ) Tj -401.64 -13.44 TD 0.0009 Tc 2.2791 Tw (important to note that) Tj 0 Tc -0.04 Tw ( ) Tj 113.04 0 TD -0.0102 Tc 2.3531 Tw (this genetic convergence does not necessarily entail premature) Tj 0 Tc -0.04 Tw ( ) Tj -113.04 -13.44 TD -0.009 Tc 0 Tw (convergence) Tj 58.92 0 TD -0.007 Tc -0.033 Tw (; ) Tj 7.56 0 TD 0.0013 Tc 1.4187 Tw (in the case of real world applications) Tj 0 Tc -0.04 Tw ( ) Tj 184.8 0 TD -0.007 Tc 0 Tw (t) Tj 3.24 0 TD 0.067 Tc (he) Tj 10.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD 0.0073 Tc 0.0727 Tw (population ) Tj 54.36 0 TD -0.0376 Tc -0.2424 Tw (usually ) Tj 37.92 0 TD 0.024 Tc 1.376 Tw (continues to) Tj 0 Tc 0.2 Tw ( ) Tj -362.04 -13.44 TD -0.01 Tc 0.61 Tw (explore the search space in this converged manner until a) Tj 0 Tc -0.04 Tw ( ) Tj 276 0 TD -0.0216 Tc -0.0184 Tw (stable ) Tj 30.6 0 TD -0.0194 Tc 0.6194 Tw (fitness peak is found) Tj 97.8 0 TD -0.04 Tc 0 Tw (. ) Tj 6.36 0 TD -0.0047 Tc 0.2047 Tw (In ) Tj -410.76 -13.44 TD -0.0105 Tc 3.0905 Tw (such cases ) Tj 3.113 Tc 0 Tw (t) Tj 61.2 0 TD 0.0075 Tc 3.0485 Tw (he evolutionary path of the converged population through the space of) Tj 0 Tc -0.04 Tw ( ) Tj -61.2 -13.44 TD -0.0067 Tc 1.4467 Tw (possible genotypes will generally consist of phase) Tj 241.92 0 TD 0.0023 Tc 1.3977 Tw (s of) Tj 0 Tc 0.08 Tw ( ) Tj 22.92 0 TD -0.0075 Tc -0.1525 Tw (relatively ) Tj 48.36 0 TD 0.0073 Tc 0.1927 Tw (directed ) Tj 42 0 TD -0.0033 Tc 1.4033 Tw (movement up) Tj 0 Tc 0.2 Tw ( ) Tj -355.2 -13.44 TD -0.0013 Tc 0.5613 Tw (fitness slopes as well as) Tj 113.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0138 Tc 0.6138 Tw (random genetic drift along \(fitness\) neutral networks) Tj 0 Tc -0.04 Tw ( ) Tj 253.08 0 TD -0.0148 Tc -0.1452 Tw (\(Harvey ) Tj 41.76 0 TD 0.033 Tc 0 Tw (&) Tj 9.12 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0128 Tc 0.2128 Tw (Thompson, 1996) Tj 79.32 0 TD -0.0137 Tc 0.1537 Tw (; Smith ) Tj 37.44 0 TD /F3 11.68 Tf 0.016 Tc 0.304 Tw (et al.) Tj 23.64 0 TD /F0 11.68 Tf -0.0163 Tc 0.1763 Tw (, 2002; Ebner ) Tj 66.84 0 TD /F3 11.68 Tf -0.008 Tc 0.208 Tw (et al.) Tj 23.52 0 TD /F0 11.68 Tf -0 Tc 0.2 Tw (, 2001) Tj 29.4 0 TD -0.0447 Tc 0.0047 Tw (\). ) Tj 9.96 0 TD -0.0113 Tc 0.1873 Tw (We propose that the widespread ) Tj ET endstream endobj 54 0 obj 14469 endobj 40 0 obj << /Type /Page /Parent 5 0 R /Resources << /Font << /F0 6 0 R /F1 19 0 R /F3 36 0 R >> /XObject << /im4 42 0 R /im5 48 0 R >> /ProcSet 2 0 R >> /Contents [ 44 0 R 50 0 R 53 0 R ] >> endobj 56 0 obj << /Length 57 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj -5.88 688.8 TD /F0 11.68 Tf 0.04 Tc 0 Tw (5) Tj -414.6 -35.64 TD 0.0049 Tc 2.0951 Tw (concern with the permutation problem in ) Tj 2.153 Tc 0 Tw (t) Tj 210 0 TD 0.008 Tc 2.0777 Tw (he literature stems from a disregard of the) Tj 0 Tc 0.08 Tw ( ) Tj -210 -13.44 TD 0.0014 Tc 0.0066 Tw (generally converged nature of practical GA) Tj 202.68 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0055 Tc 0.0855 Tw (based search. ) Tj 65.28 0 TD 0 Tc -0.04 Tw ( ) Tj -271.8 -13.32 TD ( ) Tj 0 -13.44 TD 0.0035 Tc 0.1765 Tw (The purpose of this paper is ) Tj 134.4 0 TD -0.0037 Tc -0.0363 Tw (therefore ) Tj 45.24 0 TD 0.0034 Tc 0 Tw (twofold) Tj 36.36 0 TD -0.007 Tc (:) Tj 3.24 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0447 Tc 0 Tw (\(i\)) Tj 11.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0165 Tc 0 Tw (to) Tj 9.12 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0217 Tc 0 Tw (introduce) Tj 44.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0023 Tc -0.0423 Tw (the ) Tj 17.4 0 TD /F3 11.68 Tf 0.0069 Tc 0.1931 Tw (convergence argument) Tj 107.04 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD 0.0363 Tc 0.5237 Tw (to explain) Tj 47.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.0643 Tc -0.2157 Tw (why ) Tj 23.4 0 TD 0.0035 Tc 0.0765 Tw (standard ) Tj 43.2 0 TD -0.0131 Tc -0.0269 Tw (crossover ) Tj 48.12 0 TD -0.0024 Tc -0.0376 Tw (operators ) Tj 47.04 0 TD 0.037 Tc 0.163 Tw (need ) Tj 25.68 0 TD -0.0143 Tc 0.6343 Tw (not be harmful) Tj 69.84 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0074 Tc 0.4326 Tw (when used with simple ) Tj -311.28 -13.44 TD -0.0165 Tc 0 Tw (GAs) Tj 21.36 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0025 Tc 0.1175 Tw (in a practical context) Tj 97.92 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0092 Tc 0.0708 Tw (\(section 2\)) Tj 49.68 0 TD -0.0265 Tc 0.1665 Tw (, and ) Tj 25.8 0 TD 0.0018 Tc 0 Tw (\(ii\)) Tj 14.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0165 Tc 0 Tw (to) Tj 9.12 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0156 Tc 0.1156 Tw (provide a series of experiments to ) Tj 161.28 0 TD -0.0267 Tc -0.0133 Tw (obtain ) Tj -391.44 -13.44 TD -0.0025 Tc 1.8225 Tw (an indication of) Tj 76.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.8 0 TD 0.0023 Tc 0 Tw (the) Tj 14.28 0 TD 0 Tc -0.04 Tw ( ) Tj 4.8 0 TD -0.0098 Tc 1.8298 Tw (extent of the) Tj 0 Tc -0.04 Tw ( ) Tj 66.72 0 TD -0.0154 Tc 0.0954 Tw (permutation ) Tj 61.08 0 TD -0.0237 Tc 1.9037 Tw (problem when using) Tj 0 Tc -0.28 Tw ( ) Tj 103.68 0 TD -0.018 Tc 1.898 Tw (a simple GA) Tj 62.64 0 TD 0 Tc -0.04 Tw ( ) Tj 4.8 0 TD -0.0018 Tc 0.0818 Tw (with ) Tj -399.72 -13.44 TD -0.0131 Tc -0.0269 Tw (crossover ) Tj 48.72 0 TD 0.0165 Tc 0.0635 Tw (to ) Tj 13.2 0 TD 0.02 Tc 0 Tw (optimize) Tj 40.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.0165 Tc 1.1435 Tw (ANN weights) Tj 65.76 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.0045 Tc 1.1555 Tw (for classification tas) Tj 96.48 0 TD -0.2118 Tc 0 Tw (ks) Tj 10.2 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.0025 Tc 1.1575 Tw (on two standard benchmark) Tj 0 Tc -0.04 Tw ( ) Tj -287.52 -13.44 TD -0.0341 Tc 0 Tw (problems) Tj 43.32 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD 0.0092 Tc 0.9108 Tw (\(section 3\)) Tj 50.52 0 TD 0.08 Tc 0 Tw (. ) Tj 6.84 0 TD 0.0043 Tc 0.9157 Tw (The results of) Tj 0 Tc -0.04 Tw ( ) Tj 69.96 0 TD 0.0046 Tc 0.9154 Tw (this series of experiments) Tj 121.92 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD 0.0071 Tc 0.9129 Tw (give empirical) Tj 0 Tc -0.04 Tw ( ) Tj 72 0 TD -0 Tc 0 Tw (support) Tj 35.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD 0.0165 Tc 0.0635 Tw (to ) Tj -411.36 -13.44 TD 0.0023 Tc -0.0423 Tw (the ) Tj 17.16 0 TD -0.0029 Tc 0.0829 Tw (convergence argument) Tj 106.08 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0092 Tc -0.0492 Tw (\(section 4\)) Tj 49.56 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD ( ) Tj -164.28 -13.44 TD ( ) Tj -17.4 -13.68 TD /F1 11.68 Tf 0.06 Tc 0 Tw (2.) Tj 8.76 0 TD /F2 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 8.76 0 TD /F1 11.68 Tf 0.0094 Tc 0 Tw (T) Tj 7.8 0 TD 0.0067 Tc 0.0133 Tw (he permutation problem) Tj 121.92 0 TD 0 Tc -0.04 Tw ( ) Tj -147.24 -13.2 TD /F0 11.68 Tf ( ) Tj 0 -13.44 TD 0.0026 Tc 0.6874 Tw (In this section we review some of the work which has been done) Tj 0 Tc -0.04 Tw ( ) Tj 313.68 0 TD 0.0326 Tc 0.6474 Tw (in order) Tj 0 Tc -0.04 Tw ( ) Tj 41.16 0 TD 0.0043 Tc 0.6757 Tw (to address the) Tj 0 Tc -0.04 Tw ( ) Tj -354.84 -13.44 TD -0.0154 Tc 0 Tw (permutation) Tj 56.4 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.0444 Tc 0 Tw (problem) Tj 39 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0093 Tc 0.4893 Tw (\(section 2.1\). We also) Tj 103.32 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.004 Tc 0.324 Tw (introduce the convergence argument ) Tj 174.84 0 TD -0.0017 Tc 0.2017 Tw (in order ) Tj -383.4 -13.44 TD 0.0363 Tc 0.0437 Tw (to explain) Tj 46.56 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0096 Tc 0.0704 Tw (why the problem) Tj 79.44 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0034 Tc 0.0166 Tw (does not ) Tj 42.36 0 TD -0 Tc 0.2005 Tw (typically appear) Tj 75.12 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0247 Tc 0 Tw (when) Tj 25.32 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0024 Tc 0.1576 Tw (standard GAs are applied in a ) Tj -281.04 -13.44 TD -0.0124 Tc 0.0924 Tw (practical context \(section 2.2\)) Tj 138.72 0 TD -0.04 Tc 0 Tw (.) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj -141.72 -13.32 TD ( ) Tj 0 -13.44 TD -0.0267 Tc 0 Tw (2.1) Tj 14.64 0 TD /F4 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 2.88 0 TD /F0 11.68 Tf 0.0131 Tc -0.0531 Tw (Previous work) Tj 67.92 0 TD 0 Tc -0.04 Tw ( ) Tj -85.44 -13.44 TD ( ) Tj 0 -13.44 TD 0.0096 Tc 0.1304 Tw (The various a) Tj 63.6 0 TD -0.0124 Tc 0 Tw (ppro) Tj 21.48 0 TD -0.0043 Tc -0.0357 Tw (aches ) Tj 28.92 0 TD 0.0553 Tc 0 Tw (of) Tj 9.72 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0414 Tc 0 Tw (avoid) Tj 25.92 0 TD 0.1043 Tc (ing) Tj 14.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0023 Tc -0.0423 Tw (the ) Tj 17.28 0 TD -0.0045 Tc -0.0355 Tw (permutation ) Tj 59.52 0 TD -0.0339 Tc 0.1139 Tw (problem can be ) Tj 74.88 0 TD 0.0463 Tc 0 Tw (broadl) Tj -0.44 Tc 0.04 Tw (y ) Tj 38.76 0 TD -0.0336 Tc 0 Tw (grouped) Tj 38.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0465 Tc 0.1535 Tw (into ) Tj -402.12 -13.44 TD -0 Tc 0.08 Tw (two ) Tj 21.24 0 TD -0.04 Tc 0 Tw (non) Tj 17.52 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.005 Tc (exclusive) Tj 44.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0292 Tc 0 Tw (classes) Tj 32.52 0 TD 0.0039 Tc 0.8201 Tw (: \(i\) those that focus on improving the crossover operator, and) Tj 0 Tc 0.2 Tw ( ) Tj -123 -13.44 TD 0.0055 Tc 0.3595 Tw (\(ii\) those that focus on improving the genetic representation) Tj 282.72 0 TD 0.08 Tc 0 Tw (. ) Tj 6.24 0 TD 0.0105 Tc 0.2895 Tw (The general aim is to adjust ) Tj -288.96 -13.44 TD 0.0023 Tc 3.1977 Tw (the ) Tj 3.16 Tc 0 Tw (o) Tj 26.28 0 TD -0.0115 Tc 3.3115 Tw (verall crossover procedure in such a way) Tj 0 Tc -0.16 Tw ( ) Tj 216.48 0 TD -0.0017 Tc 3.2874 Tw (that it is less likely to disrupt any) Tj 0 Tc -0.04 Tw ( ) Tj -242.76 -13.44 TD -0.0043 Tc 0 Tw (distributed) Tj 50.04 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0413 Tc 0 Tw (knowledge) Tj 51.12 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0169 Tc -0.0231 Tw (stored in the ) Tj 60.72 0 TD -0.036 Tc -0.004 Tw (genetic ) Tj 36.48 0 TD 0.0138 Tc 0 Tw (representation) Tj 66.24 0 TD 0.08 Tc (. ) Tj 5.88 0 TD 0 Tc -0.04 Tw ( ) Tj -276.36 -13.44 TD ( ) Tj 0 -13.44 TD -0.0494 Tc 0 Tw (I) Tj 3.72 0 TD -0.007 Tc -0.033 Tw (t ) Tj 6.72 0 TD 0.0084 Tc 0.4316 Tw (has been) Tj 41.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.0176 Tc 0.0624 Tw (proposed ) Tj 46.32 0 TD 0.0115 Tc 0.3085 Tw (that if one is ) Tj 63 0 TD -0.0013 Tc -0.0387 Tw (somehow ) Tj 48.36 0 TD -0.0015 Tc 0.4415 Tw (able to identify functional aspects of hidden ) Tj -212.52 -13.44 TD 0.04 Tc 0 Tw (no) Tj 11.64 0 TD 0.067 Tc (de) Tj 11.04 0 TD -0.0038 Tc 1.2038 Tw (s during the recombin) Tj 105.72 0 TD -0.0055 Tc 1.1855 Tw (ation procedure then this would allow the) Tj 0 Tc -0.04 Tw ( ) Tj 204.96 0 TD -0.001 Tc 1.161 Tw (implementation of) Tj 0 Tc 0.08 Tw ( ) Tj -333.36 -13.44 TD -0.0332 Tc 0.7532 Tw (some form of ) Tj 0.8141 Tc 0 Tw (\223) Tj 72.6 0 TD 0.0133 Tc (intelligent) Tj 47.64 0 TD -0.0259 Tc (\224) Tj 5.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0264 Tc -0.0136 Tw (crossover ) Tj 48.24 0 TD -0.0078 Tc 0.6478 Tw (\(Montana & Davis, 1989) Tj 118.56 0 TD -0.0024 Tc 0.4024 Tw (; see also ) Tj 47.4 0 TD -0.0079 Tc 0 Tw (Garc\355a) Tj 31.2 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0146 Tc -0.0254 Tw (Pedrajas, ) Tj -378.12 -13.44 TD 0.0235 Tc 0 Tw (Ortiz) Tj 24 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0212 Tc -0.0188 Tw (Boyer ) Tj 32.64 0 TD 0.033 Tc 0 Tw (&) Tj 9 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.027 Tc 0 Tw (Herv\341s) Tj 33.24 0 TD -0.0494 Tc (-) Tj 3.96 0 TD -0.0356 Tc (Mart\355nez) Tj 42 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.2 0 TD 0.01 Tc 0 Tw (2006) Tj 23.28 0 TD -0.0494 Tc (\)) Tj 3.84 0 TD 0.2 Tc (. ) Tj 7.2 0 TD -0.0463 Tc 0.0063 Tw (One ) Tj 23.4 0 TD 0.0111 Tc -0.0511 Tw (popular ) Tj 39.84 0 TD 0.0111 Tc 1.1489 Tw (way of achieving this is to) Tj 0 Tc 0.08 Tw ( ) Tj 133.08 0 TD -0.0231 Tc 0 Tw (treat) Tj 20.64 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.0941 Tc -0.0141 Tw (a ) Tj -415.2 -13.44 TD -0.0038 Tc 4.5638 Tw (node with its associate) Tj 119.16 0 TD 0.0034 Tc 4.5406 Tw (d weights as one functional unit) Tj 171.84 0 TD 0 Tc -0.04 Tw ( ) Tj 7.44 0 TD -0 Tc 4.5803 Tw (\(e.g. Thierens, Suykens,) Tj 0 Tc 0.08 Tw ( ) Tj -298.44 -13.44 TD -0.004 Tc 0.069 Tw (Vandewalle & Moor 1993; Belew, McInerney & Schraudolph, 1992\)) Tj 323.28 0 TD 0.2 Tc 0 Tw (. ) Tj 6 0 TD 0 Tc (Another) Tj 38.28 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0073 Tc 0.0727 Tw (suggestion ) Tj -370.44 -13.32 TD 0.0047 Tc 0 Tw (is) Tj 7.8 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0105 Tc 1.4105 Tw (to reduce the adverse effects by placing incoming and outgoing weights of a hidden) Tj 0 Tc -0.04 Tw ( ) Tj -12.12 -13.44 TD 0.04 Tc 0 Tw (no) Tj 11.64 0 TD 0.067 Tc (de) Tj 11.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.004 Tc 0.124 Tw (next to each other in the) Tj 113.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.013 Tc 0.153 Tw (genotypic representation. ) Tj 120.96 0 TD -0.0494 Tc 0 Tw (I) Tj 3.72 0 TD -0.0165 Tc 0.1965 Tw (f the genotype is arranged in ) Tj 136.92 0 TD 0.0106 Tc 0 Tw (this) Tj 16.92 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0176 Tc 0.9616 Tw (manner it is possible to bias) Tj 134.52 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD 0.0023 Tc 0 Tw (the) Tj 14.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0131 Tc -0.0269 Tw (crossover ) Tj 48.48 0 TD 0.0103 Tc -0.0503 Tw (operator ) Tj 42.84 0 TD -0 Tc 0.9056 Tw (so that it is more likely to break the) Tj 0 Tc 0.08 Tw ( ) Tj -247.8 -13.44 TD -0.0132 Tc 1.8932 Tw (genotype at) Tj 0 Tc -0.04 Tw ( ) Tj 60.72 0 TD -0.0114 Tc 1.8914 Tw (less disruptive) Tj 0 Tc -0.16 Tw ( ) Tj 73.68 0 TD 0.0118 Tc -0.0518 Tw (points, ) Tj 36.36 0 TD -0.1065 Tc 0 Tw (e.g.) Tj 16.56 0 TD 0 Tc -0.04 Tw ( ) Tj 4.8 0 TD -0.0104 Tc 2.0104 Tw (between one) Tj 0 Tc -0.04 Tw ( ) Tj 65.4 0 TD -0.0065 Tc 0 Tw (node) Tj 22.68 0 TD -0.0083 Tc 1.8883 Tw (\222s weight and ) Tj 1.8941 Tc 0 Tw (a) Tj 76.56 0 TD -0.0144 Tc -0.0256 Tw (nother\222s ) Tj 42.96 0 TD -0.0494 Tc 0 Tw (\() Tj 3.84 0 TD 0.0135 Tc 0.0665 Tw (e.g. ) Tj -403.56 -13.44 TD -0 Tc 0.08 Tw (Schaffer & Mor) Tj 74.52 0 TD -0.01 Tc 0.09 Tw (ishima, 1987\)) Tj 64.2 0 TD -0.04 Tc 0 Tw (.) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD ( ) Tj -144.6 -13.44 TD ( ) Tj 0 -13.44 TD -0.0009 Tc 0.0809 Tw (However, ) Tj 48.96 0 TD -0.0048 Tc 0.3048 Tw (this class of approaches faces three ) Tj 168.84 0 TD -0 Tc 0.26 Tw (kinds of ) Tj 41.64 0 TD -0.0086 Tc 0.1486 Tw (concerns: \(i\) ) Tj 62.28 0 TD 0.0025 Tc 0.2875 Tw (on a theoretical level ) Tj -321.72 -13.44 TD -0.0066 Tc 5.6266 Tw (the attempt to localize ANN functionality for) Tj 0 Tc -0.04 Tw ( ) Tj 252.84 0 TD -0.0053 Tc 5.6053 Tw (more targeted) Tj 70.08 0 TD 0 Tc -0.04 Tw ( ) Tj 8.52 0 TD 0.0057 Tc 5.5943 Tw (crossover appears) Tj 0 Tc -0.04 Tw ( ) Tj -331.44 -13.44 TD -0.0069 Tc 2.6069 Tw (counterintuitive when considering the distributed nature of) Tj 0 Tc -0.04 Tw ( ) Tj 295.2 0 TD -0.0115 Tc 0.0915 Tw (standard ) Tj 44.88 0 TD -0.0051 Tc 2.6051 Tw (ANNs, \(ii\) on a) Tj 0 Tc -0.04 Tw ( ) Tj -340.08 -13.44 TD -0.0114 Tc 2.3714 Tw (practical level) Tj 0 Tc 0.08 Tw ( ) Tj 73.2 0 TD -0.0062 Tc 2.3396 Tw (it has been noted that designing such \223intelligent\224 crossover operators) Tj 0 Tc 0.08 Tw ( ) Tj -73.2 -13.44 TD 0.0031 Tc 2.3132 Tw (could more than rival the complexity of the original learning problem ) Tj 2.3506 Tc 0 Tw (\() Tj 357.48 0 TD 0.0015 Tc 0.0785 Tw (cf. ) Tj 17.16 0 TD 0.0112 Tc -0.0512 Tw (Angeline, ) Tj -374.64 -13.44 TD -0.0107 Tc 0.3307 Tw (Saunders & Pollack, 1994\)) Tj 126.48 0 TD -0.0118 Tc 0.2718 Tw (, and \(iii\)) Tj 43.56 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0067 Tc 0.1933 Tw (on an experimental level it ha) Tj 139.56 0 TD -0.0109 Tc 0.1869 Tw (s been observed that in ) Tj -312.72 -13.44 TD -0.0064 Tc 2.3304 Tw (many cases simple crossover works better than the more sophisticated recombination) Tj 0 Tc 0.08 Tw ( ) Tj ET endstream endobj 57 0 obj 14097 endobj 55 0 obj << /Type /Page /Parent 5 0 R /Resources << /Font << /F0 6 0 R /F1 19 0 R /F2 22 0 R /F3 36 0 R /F4 58 0 R >> /ProcSet 2 0 R >> /Contents 56 0 R >> endobj 61 0 obj << /Length 62 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj -5.88 688.8 TD /F0 11.68 Tf 0.04 Tc 0 Tw (6) Tj -414.6 -35.64 TD -0.0042 Tc 1.4042 Tw (algorithms \(e.g. Hancock, 1992\).) Tj 158.04 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0126 Tc 1.4426 Tw (A more promising approach might be to group genes) Tj 0 Tc 0.08 Tw ( ) Tj -162.36 -13.44 TD -0.0015 Tc 0.0065 Tw (for crossover using historical markers \(e.g. Stanley & Miikkulaine) Tj 309.96 0 TD -0.0212 Tc 0.1012 Tw (n, 2002\).) Tj 42 0 TD 0 Tc -0.04 Tw ( ) Tj -351.96 -13.32 TD ( ) Tj 0 -13.44 TD -0.0056 Tc 0.2056 Tw (The other) Tj 45.24 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0052 Tc 0 Tw (class) Tj 22.68 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0047 Tc -0.0353 Tw (of ) Tj 12.84 0 TD -0.0109 Tc 0 Tw (approach) Tj 42.72 0 TD -0.0047 Tc (es) Tj 9.72 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0079 Tc 0.2079 Tw (attempts to deal with the permutation problem ) Tj 220.32 0 TD -0.0028 Tc 0.0828 Tw (by adjusting ) Tj -362.88 -13.44 TD 0.0028 Tc 2.5372 Tw (the genetic representation) Tj 124.92 0 TD 0.0023 Tc 2.4377 Tw (. Generally, the aim is to implement) Tj 0 Tc -0.04 Tw ( ) Tj 188.16 0 TD 0.067 Tc 2.413 Tw (a one) Tj 27.36 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.1365 Tc (to) Tj 9.12 0 TD -0.0494 Tc (-) Tj 3.96 0 TD 0.018 Tc -0.058 Tw (one ) Tj 22.2 0 TD 0.0229 Tc 0 Tw (mapping) Tj 40.92 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0225 Tc -0.0175 Tw (between ) Tj 45.12 0 TD 0.047 Tc 0 Tw (ANN) Tj 25.32 0 TD 0 Tc -0.04 Tw ( ) Tj 6.36 0 TD -0.001 Tc 3.381 Tw (architecture \(genotype\) and functionality \(phenotype\)) Tj 263.76 0 TD 0 Tc -0.04 Tw ( ) Tj 6.36 0 TD 0.0367 Tc 3.4033 Tw (so tha) Tj 31.08 0 TD -0.0256 Tc 3.4656 Tw (t several) Tj 0 Tc -0.04 Tw ( ) Tj -378 -13.44 TD -0.0112 Tc 3.7962 Tw (genetic permutations of the same phenotypic solution cannot co) Tj 327.48 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0133 Tc 3.7333 Tw (exist in the same) Tj 0 Tc -0.16 Tw ( ) Tj -331.32 -13.44 TD 0.0073 Tc 0 Tw (population) Tj 50.04 0 TD -0.04 Tc (. ) Tj 6 0 TD 0.0207 Tc 0.2033 Tw (This can take the form of) Tj 119.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0259 Tc 0 Tw (a) Tj 5.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0051 Tc 0 Tw (special) Tj 32.52 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.001 Tc 0.261 Tw (encoding mechanism that) Tj 119.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0092 Tc 0.2492 Tw (makes the order ) Tj -345.36 -13.44 TD -0.0036 Tc 1.4436 Tw (of nodes in the genetic representation irrelevant) Tj 231.12 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD 0.0031 Tc 1.3969 Tw (\(e.g. Thierens, 1996) Tj 96.48 0 TD 0.0173 Tc 1.3827 Tw (; Radcl) Tj 34.92 0 TD 0.012 Tc 1.388 Tw (iffe, 1993) Tj 46.92 0 TD -0.0494 Tc 0 Tw (\)) Tj 3.84 0 TD -0.04 Tc (. ) Tj -417.6 -13.44 TD -0.0062 Tc 3.9776 Tw (However, it is important to emphasize that removing) Tj 0 Tc -0.16 Tw ( ) Tj 281.04 0 TD 0.0097 Tc 3.9103 Tw (the possibility of) Tj 0 Tc -0.04 Tw ( ) Tj 93.6 0 TD -0.0251 Tc 0.1051 Tw (genotypic ) Tj -374.64 -13.44 TD -0.0027 Tc 0 Tw (permutations) Tj 60.96 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.0053 Tc 1.5147 Tw (in this manner can be) Tj 0 Tc 0.08 Tw ( ) Tj 110.52 0 TD 0.008 Tc -0.048 Tw (quite ) Tj 27.84 0 TD 0 Tc 1.5596 Tw (counterproductive in many cases.) Tj 0 Tc 0.08 Tw ( ) Tj 165.48 0 TD 0.0089 Tc 1.5111 Tw (During his) Tj 0 Tc 0.08 Tw ( ) Tj -369.24 -13.44 TD -0.008 Tc 1.288 Tw (investigation of the permutation problem, Hancock \(1992\) observed) Tj 0 Tc -0.04 Tw ( ) Tj 330.72 0 TD -0.0123 Tc 1.3523 Tw (to his surp) Tj 51.36 0 TD -0.0165 Tc -0.0235 Tw (rise ) Tj 21 0 TD -0.03 Tc -0.13 Tw (that ) Tj -403.08 -13.44 TD 0.0106 Tc 0 Tw (this) Tj 16.92 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.0106 Tc -0.2694 Tw (consistently ) Tj 59.16 0 TD -0 Tc 0.5605 Tw (produced worse results.) Tj 0 Tc -0.04 Tw ( ) Tj 115.44 0 TD -0.0202 Tc 0.1002 Tw (Indeed, ) Tj 38.04 0 TD 0.0039 Tc 0.5561 Tw (in contrast to the traditional view that) Tj 0 Tc -0.04 Tw ( ) Tj 182.16 0 TD 0.0941 Tc -0.0141 Tw (a ) Tj -415.2 -13.44 TD 0.0518 Tc 0 Tw (many) Tj 25.8 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.1365 Tc (to) Tj 9.24 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0014 Tc 1.0014 Tw (one mapping is ) Tj 0.9341 Tc 0 Tw (a) Tj 82.32 0 TD 0.04 Tc (n) Tj 5.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD 0.0032 Tc -0.0432 Tw (undesirable ) Tj 57.72 0 TD 0.0141 Tc 0.9059 Tw (source of deception,) Tj 96.36 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD 0.0033 Tc 0.9167 Tw (it has) Tj 0 Tc -0.04 Tw ( ) Tj 29.76 0 TD 0.0073 Tc -0.1673 Tw (recently ) Tj 41.52 0 TD 0.0146 Tc 0.9054 Tw (been shown) Tj 0 Tc 0.2 Tw ( ) Tj -363.96 -13.44 TD -0 Tc -0.04 Tw (that ) Tj 22.44 0 TD -0.0054 Tc 2.0054 Tw (the neutral search space afforded by the use of) Tj 0 Tc -0.04 Tw ( ) Tj 237.36 0 TD -0.0124 Tc 0.0924 Tw (such ) Tj 26.28 0 TD 0.0018 Tc 1.9982 Tw (a mapping) Tj 50.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD -0.0008 Tc 2.0008 Tw (function has the) Tj 0 Tc -0.04 Tw ( ) Tj -341.88 -13.44 TD -0.0062 Tc 0.3662 Tw (potential of significantly aiding the evolvability of a system \() Tj 288.48 0 TD -0.0165 Tc 0 Tw (e.g.) Tj 16.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0172 Tc 0.2972 Tw (Shipman, Shackleton & ) Tj -308.64 -13.44 TD 0.006 Tc 1.394 Tw (Harvey, 2000) Tj 64.92 0 TD 0.0021 Tc 1.4279 Tw (; Harvey & Thompson, 1996) Tj 140.4 0 TD -0.0447 Tc 0 Tw (\).) Tj 6.84 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0011 Tc 1.4611 Tw (The neutral theory of evolution as genetic) Tj 0 Tc 0.08 Tw ( ) Tj -216.48 -13.32 TD -0.0051 Tc 1.4051 Tw (change without selection pressure was first introduced in biolog) Tj 309.24 0 TD -0.0201 Tc 1.4801 Tw (y by Kimura \(1983\); it) Tj 0 Tc -0.04 Tw ( ) Tj -309.24 -13.44 TD 0.0065 Tc 0.5655 Tw (has recently been the focus of increased interest in evolutionary computation) Tj 0 Tc 0.08 Tw ( ) Tj 368.4 0 TD -0.0047 Tc 0.3247 Tw (and related ) Tj -368.4 -13.44 TD -0.0055 Tc -0.0345 Tw (fields ) Tj 28.8 0 TD -0.0071 Tc 0.0871 Tw (\(e.g. Smith ) Tj 54.48 0 TD /F3 11.68 Tf -0.008 Tc -0.032 Tw (et al.) Tj 23.4 0 TD /F0 11.68 Tf -0.0054 Tc 0.0054 Tw (, 2002; Ebner ) Tj 66.24 0 TD /F3 11.68 Tf -0.008 Tc -0.032 Tw (et al.) Tj 23.28 0 TD /F0 11.68 Tf 0.024 Tc -0.064 Tw (, 2001) Tj 29.28 0 TD -0.007 Tc 0 Tw (;) Tj 3.24 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0036 Tc -0.0436 Tw (Barnett, 2001; ) Tj 69.72 0 TD -0.0264 Tc 0 Tw (Izquierdo) Tj 44.76 0 TD -0.0494 Tc (-) Tj 3.96 0 TD -0.0245 Tc 0.1045 Tw (Torres, 2004\)) Tj 63.48 0 TD -0.04 Tc 0 Tw (.) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj -416.52 -13.44 TD ( ) Tj 0 -13.44 TD -0.011 Tc 1.651 Tw (This brief) Tj 0 Tc -0.04 Tw ( ) Tj 51.84 0 TD -0.0288 Tc 0 Tw (over) Tj 20.76 0 TD 0.0235 Tc -0.0635 Tw (view ) Tj 27.36 0 TD 0.0057 Tc 1.6343 Tw (of the relevant literature) Tj 0 Tc -0.04 Tw ( ) Tj 122.16 0 TD 0.1365 Tc 0 Tw (in) Tj 9.12 0 TD 0.0092 Tc 1.6308 Tw (dicates the) Tj 0 Tc 0.08 Tw ( ) Tj 55.8 0 TD 0.0138 Tc 1.6262 Tw (amount of) Tj 0 Tc 0.08 Tw ( ) Tj 54 0 TD 0.0188 Tc 1.6212 Tw (effort which has) Tj 0 Tc 0.08 Tw ( ) Tj -341.04 -13.44 TD 0.0069 Tc 0.8331 Tw (been invested toward overcoming the permutation problem) Tj 281.52 0 TD 0.0024 Tc 0.8176 Tw (. It has also been pointed out) Tj 0 Tc -0.04 Tw ( ) Tj -281.52 -13.44 TD -0.0107 Tc 4.1153 Tw (that this work is faced by a number of theoretical and practical concerns. More) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD 0.0012 Tc 0.5588 Tw (importantly, previous ) Tj 0.5741 Tc 0 Tw (e) Tj 109.8 0 TD 0 Tc -0.0404 Tw (xperimental ) Tj 59.28 0 TD 0.01 Tc 0 Tw (investigation) Tj 60.48 0 TD 0.0165 Tc (s) Tj 4.68 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.007 Tc 0 Tw (i) Tj 3.24 0 TD 0.0133 Tc 0.5467 Tw (nto the) Tj 0 Tc -0.04 Tw ( ) Tj 36.24 0 TD -0.0086 Tc -0.0314 Tw (actual ) Tj 31.44 0 TD -0.0016 Tc 0.6416 Tw (practical severity of the) Tj 0 Tc -0.04 Tw ( ) Tj -308.64 -13.44 TD -0.0045 Tc 0.0845 Tw (permutation ) Tj 60.72 0 TD -0.0071 Tc -0.0329 Tw (problem ) Tj 43.2 0 TD 0.037 Tc -0.077 Tw (have ) Tj 26.52 0 TD 0.0033 Tc 1.3967 Tw (revealed that) Tj 0 Tc -0.04 Tw ( ) Tj 65.76 0 TD 0.06 Tc 1.46 Tw (in many) Tj 39.36 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.0102 Tc 1.3898 Tw (cases the problem) Tj 0 Tc -0.04 Tw ( ) Tj 90.96 0 TD 0.1247 Tc 0 Tw (is) Tj 7.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD 0.008 Tc 1.392 Tw (not as severe as) Tj 0 Tc -0.04 Tw ( ) Tj -343.2 -13.44 TD -0.0221 Tc -0.2579 Tw (normally ) Tj 50.4 0 TD -0.0208 Tc 0 Tw (assumed) Tj 40.08 0 TD 0 Tc -0.04 Tw ( ) Tj 8.4 0 TD -0.0494 Tc 0 Tw (\() Tj 3.96 0 TD 0.0135 Tc 0.0665 Tw (e.g. ) Tj 25.2 0 TD -0.0092 Tc 5.3692 Tw (Hancock, 1992) Tj 75.84 0 TD 0.113 Tc -0.033 Tw (; ) Tj 11.64 0 TD 0.0121 Tc 0 Tw (Garc\355a) Tj 31.2 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.001 Tc 5.361 Tw (Pedrajas, Ortiz) Tj 74.76 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0028 Tc -0.0428 Tw (Boyer ) Tj 36.84 0 TD 0.033 Tc 0 Tw (&) Tj 9 0 TD 0 Tc -0.04 Tw ( ) Tj 8.4 0 TD 0.007 Tc 0 Tw (Herv\341s) Tj 33.12 0 TD -0.0494 Tc (-) Tj -416.52 -13.44 TD -0.0056 Tc (Mart\355nez) Tj 42 0 TD -0.04 Tc (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD 0.01 Tc 0 Tw (2006) Tj 23.28 0 TD -0.0494 Tc (\)) Tj 3.84 0 TD 0.0027 Tc 2.0773 Tw (, a finding which is further supported) Tj 0 Tc 0.08 Tw ( ) Tj 191.16 0 TD -0.0034 Tc 2.0994 Tw (by the results presented in this) Tj 0 Tc -0.04 Tw ( ) Tj -268.32 -13.44 TD 0.0047 Tc -0.0447 Tw (paper \(section 4\)) Tj 78.36 0 TD -0.04 Tc 0 Tw (. ) Tj 6.12 0 TD 0.0073 Tc -0.0473 Tw (What can account for th) Tj 111.96 0 TD -0.0078 Tc 0.0638 Tw (is discrepancy between theory and practice) Tj 200.64 0 TD -0.0259 Tc 0 Tw (?) Tj 5.4 0 TD 0 Tc -0.04 Tw ( ) Tj -385.08 -13.44 TD ( ) Tj -17.4 -13.44 TD -0.0267 Tc 0 Tw (2.2) Tj 14.64 0 TD /F4 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 2.88 0 TD /F0 11.68 Tf 0.0065 Tc -0.0465 Tw (The convergence argument) Tj 127.2 0 TD 0 Tc -0.04 Tw ( ) Tj -144.72 -13.44 TD ( ) Tj 0 -13.32 TD -0.0314 Tc 0.8314 Tw (We introduce the) Tj 0 Tc -0.16 Tw ( ) Tj 85.32 0 TD /F3 11.68 Tf -0.0057 Tc 0.6857 Tw (convergence argument) Tj 107.28 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0121 Tc 0.7435 Tw (to explain why the possibility for disruption by) Tj 0 Tc -0.28 Tw ( ) Tj -196.2 -13.44 TD 0.011 Tc 0.159 Tw (the use of standard ) Tj 91.92 0 TD -0.0518 Tc 0 Tw (cro) Tj 14.88 0 TD 0.0063 Tc -0.0463 Tw (ssover ) Tj 33 0 TD 0.011 Tc 0.069 Tw (operators ) Tj 46.68 0 TD 0.0647 Tc -0.1047 Tw (is ) Tj 11.04 0 TD -0 Tc 0.0805 Tw (often ) Tj 27.24 0 TD 0 Tc 0.2393 Tw (insignificant when using a simple GA: ) Tj 184.8 0 TD -0.0353 Tc -0.0047 Tw (\(i\) ) Tj -409.56 -13.44 TD -0.0188 Tc -0.1412 Tw (genetic ) Tj 37.8 0 TD 0.0019 Tc -0.0419 Tw (convergence ) Tj 63.24 0 TD -0.0033 Tc 1.3033 Tw (occurs during the initial generations after which) Tj 0 Tc 0.08 Tw ( ) Tj 235.8 0 TD -0.002 Tc 1.282 Tw (most members of) Tj 0 Tc -0.04 Tw ( ) Tj -336.84 -13.44 TD 0.0086 Tc 4.0314 Tw (the population will) Tj 0 Tc -0.04 Tw ( ) Tj 103.44 0 TD -0.053 Tc -0.107 Tw (have ) Tj 28.92 0 TD -0.041 Tc 0 Tw (similar) Tj 32.28 0 TD 0 Tc -0.04 Tw ( ) Tj 7.2 0 TD -0.0183 Tc 4.1783 Tw (genetic representations) Tj 111.24 0 TD 0.0035 Tc 4.0365 Tw (, and) Tj 0 Tc -0.04 Tw ( ) Tj 33.84 0 TD -0.002 Tc 4.042 Tw (therefore \(ii\)) Tj 0 Tc -0.04 Tw ( ) Tj 70.44 0 TD 0.006 Tc 0.074 Tw (several ) Tj -387.36 -13.44 TD -0.0062 Tc -0.1538 Tw (significantly ) Tj 61.44 0 TD 0.0165 Tc 0 Tw (dis) Tj 13.68 0 TD 0.0035 Tc 0.2099 Tw (tinct permutations of the same solution are unlikely to co) Tj 268.56 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0 Tc 0.2002 Tw (exist. We agree ) Tj -347.64 -13.44 TD -0.0102 Tc 2.0102 Tw (with Harvey \(1992\) that in biological terms we could say that a simple GA typically) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD 0.0028 Tc 3.3652 Tw (adapts a particular converged population, or) Tj 0 Tc -0.04 Tw ( ) Tj 228.96 0 TD /F3 11.68 Tf -0.0047 Tc 0 Tw (specie) Tj 29.16 0 TD 0.0165 Tc (s) Tj 4.56 0 TD /F0 11.68 Tf -0.0037 Tc 3.4437 Tw (. In this case using) Tj 0 Tc -0.16 Tw ( ) Tj 106.8 0 TD -0.1459 Tc -0.0141 Tw (a ) Tj 11.4 0 TD 0.0035 Tc 0.0765 Tw (standard ) Tj -380.88 -13.44 TD -0.0131 Tc -0.0269 Tw (crossover ) Tj 47.52 0 TD 0.058 Tc 0 Tw (ope) Tj 16.92 0 TD -0.0184 Tc -0.0216 Tw (rator ) Tj 24.96 0 TD -0.0038 Tc 0.0183 Tw (is likely to produce offspring with similar fitness to their parents. ) Tj 307.08 0 TD 0 Tc -0.04 Tw ( ) Tj -396.48 -13.44 TD ( ) Tj 0 -13.44 TD -0.003 Tc 3.4103 Tw (This is a general argument that applies whenever there is a many) Tj 339.48 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD 0.1365 Tc (to) Tj 9.24 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0026 Tc 3.3226 Tw (one mapping) Tj 0 Tc -0.04 Tw ( ) Tj -356.52 -13.44 TD -0.0139 Tc 0.5139 Tw (between genotype \(which could be binary, real) Tj 221.4 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0055 Tc 0.4855 Tw (valued, etc.\) and phenotype) Tj 0 Tc -0.04 Tw ( ) Tj 133.44 0 TD -0.0062 Tc 0.2662 Tw (\(which could ) Tj -358.8 -13.44 TD 0.007 Tc -0.047 Tw (be ) Tj 15.24 0 TD 0.007 Tc 0.073 Tw (ANN ) Tj 29.52 0 TD 0.0835 Tc 0 Tw (weig) Tj 22.68 0 TD 0.0139 Tc 1.2661 Tw (hts, structure) Tj 61.8 0 TD -0.04 Tc 0 Tw (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0196 Tc 0 Tw (etc) Tj 13.56 0 TD -0.04 Tc (.) Tj 2.88 0 TD 0 Tc 1.3276 Tw (\); the permutation problem in the) Tj 0 Tc -0.04 Tw ( ) Tj 165.6 0 TD 0.0028 Tc -0.0428 Tw (artificial ) Tj 43.8 0 TD 0.013 Tc 1.267 Tw (evolution of) Tj 0 Tc 0.08 Tw ( ) Tj -362.28 -13.44 TD 0.0011 Tc 2.6789 Tw (neural networks weights is) Tj 0 Tc -0.04 Tw ( ) Tj 138.48 0 TD 0.058 Tc 0 Tw (one) Tj 16.92 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD -0.0187 Tc 2.6787 Tw (well known example.) Tj 105.24 0 TD 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD -0.0063 Tc 2.6663 Tw (The claim that) Tj 0 Tc -0.04 Tw ( ) Tj 78.36 0 TD -0.0156 Tc 2.7356 Tw (using standard) Tj 0 Tc 0.08 Tw ( ) Tj -350.16 -13.44 TD 0 Tc 0.0798 Tw (crossover ) Tj 51.48 0 TD 0.0062 Tc 3.8795 Tw (in combination with such genetic representations tends to) Tj 0 Tc 0.2 Tw ( ) Tj 302.52 0 TD 0.0063 Tc 3.7937 Tw (produce unfit) Tj 0 Tc -0.04 Tw ( ) Tj ET endstream endobj 62 0 obj 14960 endobj 60 0 obj << /Type /Page /Parent 5 0 R /Resources << /Font << /F0 6 0 R /F3 36 0 R /F4 58 0 R >> /ProcSet 2 0 R >> /Contents 61 0 R >> endobj 65 0 obj << /Length 66 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj -5.88 688.8 TD /F0 11.68 Tf 0.04 Tc 0 Tw (7) Tj -414.6 -35.64 TD -0.0124 Tc 1.5324 Tw (offspring, as ) Tj 1.5341 Tc 0 Tw (e) Tj 69.36 0 TD -0.0014 Tc 1.5454 Tw (xemplified by the literature on the permutation problem, seems to result) Tj 0 Tc -0.04 Tw ( ) Tj -69.36 -13.44 TD 0.0025 Tc 0.8215 Tw (from a disregard of the generally converged nature of standard population) Tj 353.4 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0045 Tc 0.9155 Tw (based search.) Tj 0 Tc 0.08 Tw ( ) Tj -357.24 -13.32 TD -0.0026 Tc 2.9506 Tw (The convergence argument therefore qualifies the common generalization that \223it is) Tj 0 Tc -0.16 Tw ( ) Tj 0 -13.44 TD 0.0212 Tc 0.0588 Tw (generally ve) Tj 57.48 0 TD 0.005 Tc 0.1186 Tw (ry difficult to apply crossover operators in evolving connection weights since ) Tj -57.48 -13.44 TD 0.0012 Tc 2.9479 Tw (they tend to destroy feature detectors found during the evolutionary process\224 \(Yao,) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.0082 Tc 0 Tw (1999\).) Tj 30.12 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD 0.0038 Tc 2.0962 Tw (In contrast, we note that standard crossover is usually not harmful in practice) Tj 0 Tc 0.08 Tw ( ) Tj -35.28 -13.44 TD -0.0169 Tc 0 Tw (becaus) Tj 31.68 0 TD -0.0075 Tc 2.4783 Tw (e for most of the generations of an evolutionary run the population will have) Tj 0 Tc -0.04 Tw ( ) Tj -31.68 -13.44 TD -0.0046 Tc 0.0096 Tw (converged onto one area of the genotypic search space) Tj 254.76 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.011 Tc -0.051 Tw (which it continues to explore) Tj 135.72 0 TD -0.04 Tc 0 Tw (.) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD ( ) Tj -399.24 -13.44 TD ( ) Tj 0 -13.44 TD -0.0022 Tc 3.9522 Tw (The convergence argument is supported) Tj 0 Tc 0.08 Tw ( ) Tj 209.4 0 TD -0.0026 Tc 3.9626 Tw (by the observation that) Tj 0 Tc -0.04 Tw ( ) Tj 125.52 0 TD -0.0188 Tc 4.0588 Tw (the two) Tj 0 Tc 0.08 Tw ( ) Tj 45.48 0 TD -0.0182 Tc -0.1418 Tw (previous ) Tj -380.4 -13.44 TD -0.006 Tc 1.646 Tw (empirical st) Tj 56.4 0 TD 0.0127 Tc 0 Tw (udies) Tj 24.72 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.0027 Tc 1.6277 Tw (which investigated the practical severity of the permutation problem) Tj 331.92 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.022 Tc -0.018 Tw (and ) Tj 20.4 0 TD 0.0036 Tc 0.6764 Tw (which did not) Tj 0 Tc -0.04 Tw ( ) Tj 69.48 0 TD -0.0494 Tc 0 Tw (f) Tj 3.84 0 TD -0.007 Tc (i) Tj 3.24 0 TD -0.02 Tc -0.02 Tw (nd ) Tj 15.24 0 TD 0.138 Tc 0 Tw (any) Tj 16.92 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0 Tc -0.0406 Tw (significant ) Tj 53.04 0 TD -0.012 Tc 0.782 Tw (empirical evidence for its existence) Tj 168.24 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0013 Tc 0.7387 Tw (made no use) Tj 0 Tc 0.08 Tw ( ) Tj -360.6 -13.44 TD -0.0018 Tc 0.7118 Tw (of any diversity preserving mechanism) Tj 184.32 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0052 Tc 0.6748 Tw (\(Hancock, 1992;) Tj 0 Tc -0.04 Tw ( ) Tj 82.2 0 TD -0.0279 Tc 0 Tw (Garc\355a) Tj 31.08 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0076 Tc 0.7924 Tw (Pedrajas, Ortiz) Tj 70.08 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0028 Tc -0.0428 Tw (Boyer ) Tj 32.28 0 TD 0.033 Tc 0 Tw (&) Tj 9.12 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.013 Tc 0 Tw (Herv\341s) Tj 33 0 TD -0.0494 Tc (-) Tj 3.96 0 TD -0.0206 Tc (Mart\355nez) Tj 42 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 6.84 0 TD 0.0221 Tc 0 Tw (2006\)) Tj 27.36 0 TD -0.0073 Tc 3.8553 Tw (. The GAs used in their experiments were therefore in all) Tj 0 Tc -0.16 Tw ( ) Tj -116.04 -13.44 TD -0.0028 Tc 1.4028 Tw (likelihood applying crossover to members of a converged population.) Tj 335.64 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.003 Tc 0.083 Tw (Indeed, ) Tj 38.88 0 TD 0.0013 Tc -0.0413 Tw (Hancock ) Tj -378.96 -13.44 TD -0.0107 Tc 2.3507 Tw (\(1992\) notes that \223resolving the permutations is aided by high selection pressure: by) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.0125 Tc 0.4525 Tw (increasing ) Tj 0.473 Tc 0 Tw (t) Tj 54.6 0 TD 0.0101 Tc 0.4299 Tw (he dominance of the top) Tj 114.72 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD 0.0054 Tc 0.4346 Tw (ranked string, it is better able to enforce its order on ) Tj -173.28 -13.32 TD 0.0009 Tc -0.0409 Tw (the population\224. ) Tj 78.12 0 TD 0 Tc -0.04 Tw ( ) Tj -78.12 -13.44 TD ( ) Tj 0 -13.44 TD -0.0073 Tc 1.4257 Tw (The reason why a GA\222s population generally converges so rapidly is that the selection) Tj 0 Tc 0.08 Tw ( ) Tj T* -0.0067 Tc 1.42 Tw (operator reduces the genetic diversity of the population towards zero) Tj 0 Tc 0.08 Tw ( ) Tj 337.44 0 TD 0.0025 Tc 1.3975 Tw (because a few fit) Tj 0 Tc -0.04 Tw ( ) Tj -337.44 -13.44 TD -0.0041 Tc 0.7641 Tw (individuals will quickly spread their genes throughout the population. In the presence of) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0015 Tc 0.1158 Tw (mutation the genetic diversity after convergence is not zero, but a higher balance between ) Tj T* -0.0009 Tc 0 Tw (selection/) Tj 44.88 0 TD -0.036 Tc -0.004 Tw (genetic ) Tj 36.72 0 TD 0.0015 Tc 0.2785 Tw (drift and mutation \(Harvey & Thompson, ) Tj 198.36 0 TD -0.0011 Tc 0.2811 Tw (1996\). It has been argued that ) Tj -279.96 -13.44 TD -0.0019 Tc 2.0019 Tw (it is mainly through mutation that fitter) Tj 0 Tc -0.04 Tw ( ) Tj 199.2 0 TD -0.0066 Tc -0.0334 Tw (phenotypic ) Tj 56.76 0 TD -0.003 Tc 1.979 Tw (solutions can be found even after) Tj 0 Tc -0.04 Tw ( ) Tj -255.96 -13.44 TD -0.0188 Tc -0.1412 Tw (genetic ) Tj 36.96 0 TD 0.0012 Tc 0.3557 Tw (convergence; either by hill climbing or through genetic drift on a \(nearly\) neutral ) Tj -36.96 -13.44 TD -0.0061 Tc 3.0381 Tw (fitness landscape leading to punctuated increa) Tj 229.32 0 TD 0 Tc 3.0393 Tw (ses in fitness \(e.g. Harvey, 2001; van) Tj 0 Tc 0.2 Tw ( ) Tj -229.32 -13.44 TD -0.0106 Tc 0.8586 Tw (Nimwegen & Crutchfield, 2000; Barnett, 2001\).) Tj 229.08 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0155 Tc 0.8555 Tw (In other words, there are two important) Tj 0 Tc -0.04 Tw ( ) Tj -232.68 -13.44 TD 0.0028 Tc 0.2434 Tw (factors at work here: \(i\) genetic convergence makes it unlikely that significantly different ) Tj 0 -13.44 TD -0.0047 Tc 2.2447 Tw (genetic permutations of the same pheno) Tj 197.04 0 TD 0.0082 Tc 2.1918 Tw (typic solution will co) Tj 105.84 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0043 Tc 2.1957 Tw (exist in the population,) Tj 0 Tc -0.04 Tw ( ) Tj -306.72 -13.44 TD -0.0049 Tc 1.0569 Tw (thereby minimizing the possibility of disruption through crossover, and \(ii\) the) Tj 0 Tc -0.04 Tw ( ) Tj 381.72 0 TD -0.0271 Tc 0 Tw (fact) Tj 17.4 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD -0.03 Tc -0.13 Tw (that ) Tj -403.08 -13.44 TD -0.0105 Tc 1.0805 Tw (slightly different permutations may co) Tj 183 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD 0.0203 Tc 0.9797 Tw (exist can improve evolvability) Tj 144.72 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD -0.0025 Tc 1.0425 Tw (because it allows) Tj 0 Tc -0.04 Tw ( ) Tj -338.64 -13.32 TD 0.0053 Tc -0.0053 Tw (evolutionary search to trave) Tj 129.96 0 TD -0.0107 Tc 0.0507 Tw (rse neutral networks ) Tj 97.56 0 TD -0.0059 Tc 0 Tw (toward) Tj 32.52 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0014 Tc 0.0786 Tw (higher fitness peaks.) Tj 95.76 0 TD 0 Tc -0.04 Tw ( ) Tj -358.68 -13.44 TD ( ) Tj 0 -13.44 TD -0.033 Tc 0 Tw (A) Tj 8.4 0 TD -0.002 Tc 0.3306 Tw (ccording to the convergence argument we can expect the crossover operator to be more ) Tj -8.4 -13.44 TD -0.0023 Tc 1.2923 Tw (disruptive in evolutionary runs where the population has a longer time to convergence,) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0178 Tc 3.1578 Tw (for example when) Tj 0 Tc -0.04 Tw ( ) Tj 96.48 0 TD -0.0022 Tc 3.2022 Tw (using very larg) Tj 76.32 0 TD -0.0094 Tc 3.1794 Tw (e population sizes or when) Tj 0 Tc -0.04 Tw ( ) Tj 143.16 0 TD -0.0102 Tc 3.2102 Tw (diversity preservation) Tj 0 Tc 0.08 Tw ( ) Tj -315.96 -13.44 TD 0.0039 Tc 1.0361 Tw (methods such as niching) Tj 117.72 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD -0 Tc 1.0765 Tw (are used \(e.g. Stanley & Miikkulainen, 2002\). In such cases it) Tj 0 Tc -0.04 Tw ( ) Tj -121.68 -13.44 TD -0.0146 Tc 2.0066 Tw (might be more appropriate to make use of one or more of the methods mentioned in) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0076 Tc 1.5448 Tw (section 2.1 in order to minimize the ) Tj 1.48 Tc 0 Tw (p) Tj 185.76 0 TD -0 Tc 1.5406 Tw (ossibility of disrupting any evolved solutions, in) Tj 0 Tc -0.04 Tw ( ) Tj -185.76 -13.44 TD 0.0049 Tc 5.0311 Tw (particular when applying crossover to individuals which have been selected for) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.006 Tc 0.806 Tw (recombination from different niches.) Tj 174.12 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0016 Tc 0.9216 Tw (Moreover, ) Tj 0.927 Tc 0 Tw (w) Tj 61.2 0 TD -0.0012 Tc 0.8212 Tw (e can expect the crossover operator to) Tj 0 Tc 0.08 Tw ( ) Tj -239.16 -13.44 TD -0.0109 Tc 2.1309 Tw (generally work better with smaller popu) Tj 197.52 0 TD 0.0027 Tc 2.0973 Tw (lations. This intuition is supported by Belew,) Tj 0 Tc 0.08 Tw ( ) Tj -197.52 -13.44 TD 0.0009 Tc 1.0937 Tw (McInerney and Schraudolph \(1992\) who report that because an ANN\222s configuration is) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.0259 Tc 0 Tw (\223) Tj 5.04 0 TD /F3 11.68 Tf -0.0024 Tc (undetermined) Tj 64.32 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.0118 Tc 0.3082 Tw (by the problem it is trying to solve,\224 its various permutations are unlikely ) Tj -72.6 -13.44 TD -0.0089 Tc 0.8689 Tw (to share the same schemata and ther) Tj 173.16 0 TD 0.0057 Tc 0.8476 Tw (eby make the GA less effective. It is suggested that) Tj 0 Tc -0.04 Tw ( ) Tj ET endstream endobj 66 0 obj 10398 endobj 63 0 obj << /Type /Page /Parent 64 0 R /Resources << /Font << /F0 6 0 R /F3 36 0 R >> /ProcSet 2 0 R >> /Contents 65 0 R >> endobj 68 0 obj << /Length 69 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj -5.88 688.8 TD /F0 11.68 Tf 0.04 Tc 0 Tw (8) Tj -414.6 -35.64 TD 0.0027 Tc 3.6119 Tw (keeping the population size small will reduce the disruption caused by competing) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD 0.0025 Tc 2.459 Tw (permutations because, \223if very small populations are used with the GA, there is not) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.32 TD -0.0022 Tc 0.4662 Tw (\221room\222 for multiple alternatives to de) Tj 175.68 0 TD -0.0141 Tc 0 Tw (velop\224.) Tj 33.96 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.012 Tc 0.437 Tw (We agree, while further noting that in small ) Tj -213.24 -13.44 TD -0.0034 Tc 0.6234 Tw (populations there is not enough \221room\222 for multiple alternatives \(which might be present) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0093 Tc 3.0593 Tw (in the population initially\) to) Tj 0 Tc 0.08 Tw ( ) Tj 152.16 0 TD /F3 11.68 Tf 0.0071 Tc 0 Tw (persist) Tj 31.2 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 6 0 TD -0.0056 Tc 2.9827 Tw (in the face of selection pressure which forces) Tj 0 Tc -0.04 Tw ( ) Tj -189.36 -13.44 TD -0 Tc 0 Tw (convergence on one particul) Tj 132 0 TD -0.0074 Tc 0.0074 Tw (ar fitness peak. ) Tj 73.32 0 TD 0 Tc -0.04 Tw ( ) Tj -205.32 -13.44 TD ( ) Tj 0 -13.44 TD -0.0066 Tc 1.3186 Tw (In order to obtain more insight into the validity of the convergence argument we ran a) Tj 0 Tc -0.04 Tw ( ) Tj T* -0.0105 Tc 1.6505 Tw (series of experiments on two standard benchmark problems) Tj 289.08 0 TD -0.0091 Tc 1.6731 Tw (. The study focused on the) Tj 0 Tc -0.04 Tw ( ) Tj -289.08 -13.44 TD -0.0055 Tc 0.0188 Tw (effects of standard crossover on the ANN classification accuracy an) Tj 316.8 0 TD -0.0145 Tc 0.0345 Tw (d GA efficiency.) Tj 78.24 0 TD 0 Tc -0.04 Tw ( ) Tj -368.76 -13.44 TD ( ) Tj -26.28 -13.68 TD /F1 11.68 Tf 0.06 Tc 0 Tw (3.) Tj 8.76 0 TD /F2 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 8.76 0 TD /F1 11.68 Tf 0.0094 Tc 0 Tw (E) Tj 7.8 0 TD 0 Tc (xperiments) Tj 55.8 0 TD 0 Tc -0.04 Tw ( ) Tj -81.12 -13.2 TD /F0 11.68 Tf ( ) Tj 0 -13.44 TD -0.0267 Tc 0 Tw (3.1) Tj 14.64 0 TD /F4 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 2.88 0 TD /F0 11.68 Tf -0.0565 Tc 0 Tw (E) Tj 7.08 0 TD -0.0009 Tc -0.0391 Tw (xperimental data) Tj 78.24 0 TD 0 Tc -0.04 Tw ( ) Tj -102.84 -13.44 TD ( ) Tj 0 -13.44 TD 0.0113 Tc 0.3887 Tw (The effect of ) Tj 65.04 0 TD 0.0035 Tc 0.1965 Tw (standard ) Tj 43.08 0 TD 0.0235 Tc 0.5365 Tw (crossover on the) Tj 0 Tc -0.04 Tw ( ) Tj 81.48 0 TD 0.0028 Tc 0.0772 Tw (artificial ) Tj 43.2 0 TD 0.0021 Tc 0.5579 Tw (evolution of) Tj 0 Tc -0.04 Tw ( ) Tj 60.84 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 29.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0064 Tc 0.6136 Tw (was investigated by) Tj 0 Tc -0.16 Tw ( ) Tj -327 -13.44 TD -0.025 Tc -0.135 Tw (applying ) Tj 43.68 0 TD -0 Tc 0.0807 Tw (this technique) Tj 65.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0093 Tc 0.1236 Tw (to two real problems in the medical domain) Tj 203.88 0 TD -0.0143 Tc 0.1243 Tw (, namely breast cancer ) Tj -315.84 -13.32 TD -0.0165 Tc 2.7365 Tw (and diabetes) Tj 0 Tc -0.04 Tw ( ) Tj 66.24 0 TD -0.0097 Tc 0 Tw (diagnosis) Tj 44.04 0 TD 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD -0.0438 Tc 0 Tw (taken) Tj 25.2 0 TD 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD -0.0094 Tc 2.7294 Tw (from the \223Proben1\224 benchmark set \(Prechelt, 1994\)) Tj 256.8 0 TD -0.04 Tc 0 Tw (. ) Tj 8.52 0 TD -0.033 Tc -0.007 Tw (A ) Tj -412.08 -13.44 TD 0.0065 Tc 2.0858 Tw (practical advantage of choosing these datasets is that they have already been used in) Tj 0 Tc 0.2 Tw ( ) Tj 0 -13.44 TD 0 Tc 0.6996 Tw (research on crossover and the permutation problem) Tj 243.48 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.02 Tc -0.14 Tw (by ) Tj 15.24 0 TD -0.0079 Tc 0 Tw (Garc\355a) Tj 31.2 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0096 Tc 0.9296 Tw (Pedrajas, Ortiz) Tj 70.2 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0028 Tc -0.0428 Tw (Boyer ) Tj 32.16 0 TD -0.062 Tc 0 Tw (and) Tj 16.8 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.013 Tc 0 Tw (Herv\341s) Tj 33 0 TD -0.0494 Tc (-) Tj 3.96 0 TD -0.0056 Tc 0.0856 Tw (Mart\355nez ) Tj 45.24 0 TD -0.001 Tc 0.261 Tw (\(2006\), and th) Tj 66.36 0 TD 0.0043 Tc 0.2197 Tw (at ANNs are among the most common methods for breast ) Tj -148.56 -13.44 TD -0.003 Tc 0.603 Tw (cancer diagnosis \(Abass, 2002\).) Tj 0 Tc 0.08 Tw ( ) Tj 154.2 0 TD -0.1859 Tc 0.1459 Tw (We ) Tj 19.44 0 TD 0.0059 Tc 0.0741 Tw (also ) Tj 22.32 0 TD 0.0029 Tc 0.3171 Tw (agree with ) Tj 53.04 0 TD -0.0124 Tc 0.6924 Tw (Prechelt \(1994\)) Tj 0 Tc 0.08 Tw ( ) Tj 76.32 0 TD -0.0022 Tc 0.5622 Tw (that results obtained) Tj 0 Tc -0.04 Tw ( ) Tj -325.32 -13.44 TD -0.014 Tc 0.862 Tw (on real world data will be more revealing than if the) Tj 0 Tc -0.04 Tw ( ) Tj 254.88 0 TD -0.0206 Tc 0 Tw (ANNs) Tj 29.76 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0067 Tc 0.8067 Tw (were trained on an artificial) Tj 0 Tc -0.04 Tw ( ) Tj -288.36 -13.44 TD 0.0059 Tc 0 Tw (task) Tj 18.72 0 TD 0.0065 Tc 4.1935 Tw (, in particular becau) Tj 105.48 0 TD 0 Tc 4.1896 Tw (se we are interested in whether the permutation problem) Tj 0 Tc 0.08 Tw ( ) Tj -124.2 -13.44 TD 0.0009 Tc 1.0391 Tw (manifests in practice) Tj 98.64 0 TD 0.2 Tc 0 Tw (. ) Tj 7.2 0 TD 0.001 Tc 1.0826 Tw (It has been suggested that whereas it is possible to devise special) Tj 0 Tc 0.08 Tw ( ) Tj -105.84 -13.44 TD -0.0028 Tc 1.0528 Tw (fitness landscapes with isolated hills such that genetic convergence is likely to coincide) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.009 Tc 2.069 Tw (with premature con) Tj 94.68 0 TD -0.006 Tc 2.051 Tw (vergence on a local fitness optimum, fitness landscapes associated) Tj 0 Tc 0.2 Tw ( ) Tj -94.68 -13.44 TD -0.0048 Tc 0.0202 Tw (with many real problems are not of this nature \(Harvey & Thompson, 1996\). ) Tj 361.08 0 TD 0 Tc -0.04 Tw ( ) Tj -361.08 -13.44 TD ( ) Tj 0 -13.44 TD -0.0565 Tc 0 Tw (T) Tj 7.08 0 TD -0.0131 Tc 2.1331 Tw (he breast cancer database was) Tj 0 Tc -0.04 Tw ( ) Tj 152.64 0 TD -0.0184 Tc -0.2616 Tw (originally ) Tj 50.28 0 TD 0.0033 Tc 2.0767 Tw (obtained from the University) Tj 0 Tc -0.04 Tw ( ) Tj 146.64 0 TD -0.0647 Tc 0 Tw (of) Tj 9.6 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD -0.0259 Tc 0.1059 Tw (Wisconsin ) Tj -371.4 -13.44 TD 0.0037 Tc 0 Tw (Hospitals) Tj 44.16 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD 0.0165 Tc 0 Tw (in) Tj 9.12 0 TD 0 Tc -0.04 Tw ( ) Tj 5.88 0 TD -0.0114 Tc 0.0914 Tw (Madison ) Tj 46.68 0 TD 0.04 Tc 0 Tw (by) Tj 11.52 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD -0.0008 Tc 3.3208 Tw (Dr. ) Tj 3.3741 Tc 0 Tw (W) Tj 32.16 0 TD -0.0181 Tc 3.2181 Tw (.H. Wolberg) Tj 0 Tc -0.16 Tw ( ) Tj 67.2 0 TD 0 Tc 3.0793 Tw (\(Wolberg & Mangasarian, 1990\)) Tj 162.24 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD -0.0318 Tc -0.1282 Tw (This ) Tj -399.84 -13.44 TD -0.0038 Tc 1.2938 Tw (dataset was chosen because it has been used widely in the literature \(e.g.) Tj 0 Tc -0.04 Tw ( ) Tj 358.08 0 TD 0.0115 Tc 1.2685 Tw (Abass, 2002;) Tj 0 Tc -0.04 Tw ( ) Tj -358.08 -13.32 TD -0.0055 Tc 0.9135 Tw (Xao & Liu, 1997; Fogel, Wasson & Boughton, 1995; Prechelt, 1994\)) Tj 331.8 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0 Tc 0.8603 Tw (and is still in use) Tj 0 Tc -0.04 Tw ( ) Tj -338.52 -13.44 TD -0.0066 Tc 0 Tw (today) Tj 25.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.0009 Tc 0.0791 Tw (\(e.g. ) Tj 24 0 TD 0.0321 Tc 0 Tw (Garc\355a) Tj 31.2 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.001 Tc 0.321 Tw (Pedrajas, Ortiz) Tj 69.72 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0028 Tc 0.0772 Tw (Boyer ) Tj 31.8 0 TD 0.033 Tc 0 Tw (&) Tj 9 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.047 Tc 0 Tw (Herv\341s) Tj 33.12 0 TD -0.0494 Tc (-) Tj 3.96 0 TD -0.0206 Tc (Mart\355nez) Tj 42 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0089 Tc 0.3289 Tw (2006; Ortiz) Tj 53.76 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0243 Tc -0.0157 Tw (Boyer, ) Tj 34.68 0 TD -0.013 Tc 0 Tw (Herv\341s) Tj 33.12 0 TD -0.0494 Tc (-) Tj -416.52 -13.44 TD -0.0056 Tc (Mart\355nez) Tj 42 0 TD 0 Tc -0.04 Tw ( ) Tj 7.56 0 TD -0.087 Tc 0.047 Tw (& ) Tj 16.32 0 TD 0.0121 Tc 0 Tw (Garc\355a) Tj 31.2 0 TD -0.0494 Tc (-) Tj 3.96 0 TD -0.0146 Tc (Pedrajas,) Tj 42.36 0 TD 0 Tc -0.04 Tw ( ) Tj 7.44 0 TD -0.0259 Tc 0 Tw (2005\)) Tj 27.12 0 TD 0.0067 Tc 4.5133 Tw (. It also) Tj 43.68 0 TD 0 Tc -0.04 Tw ( ) Tj 7.56 0 TD -0.0021 Tc 4.4741 Tw (represents one of the easier Proben1) Tj 0 Tc 0.2 Tw ( ) Tj -229.2 -13.44 TD -0.0134 Tc 0.5734 Tw (benchmark sets) Tj 72.72 0 TD 0.0311 Tc 0.5289 Tw (; this) Tj 23.76 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.0174 Tc 0.6374 Tw (is important because it is very likely that many equivalent solutions) Tj 0 Tc -0.16 Tw ( ) Tj -99.96 -13.44 TD -0.0053 Tc 2.0953 Tw (exist, which should thus theoreti) Tj 159.84 0 TD 0.0435 Tc 0 Tw (call) Tj -0.0163 Tc 2.1535 Tw (y magnify the adverse effects associated with the) Tj 0 Tc -0.04 Tw ( ) Tj -159.84 -13.44 TD -0.001 Tc 1.161 Tw (permutation problem.) Tj 0 Tc 0.08 Tw ( ) Tj 106.68 0 TD -0.0144 Tc 1.1744 Tw (For this) Tj 0 Tc -0.04 Tw ( ) Tj 41.16 0 TD -0.0051 Tc 0 Tw (dataset) Tj 32.4 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.0023 Tc -0.0423 Tw (the ) Tj 18.48 0 TD -0.0206 Tc 0 Tw (ANNs) Tj 29.76 0 TD 0 Tc -0.04 Tw ( ) Tj 4.2 0 TD -0.0294 Tc 0 Tw (we) Tj 13.56 0 TD -0.0008 Tc 1.1908 Tw (re required to discriminate between) Tj 0 Tc 0.08 Tw ( ) Tj -250.32 -13.44 TD 0.0071 Tc 2.6649 Tw (benign and malignant tumors based on) Tj 0 Tc 0.2 Tw ( ) Tj 199.8 0 TD 0.04 Tc 0 Tw (9) Tj 5.88 0 TD 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD -0.0149 Tc 0 Tw (different) Tj 40.32 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD -0.0145 Tc 0 Tw (factors) Tj 31.8 0 TD -0.0031 Tc 2.7431 Tw (. There are a total of 699) Tj 0 Tc 0.2 Tw ( ) Tj -288.96 -13.44 TD -0.0114 Tc 1.1954 Tw (samples in this dataset with 65.5%) Tj 167.16 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD -0.0127 Tc 1.1927 Tw (of the examples being classified as benign.) Tj 0 Tc 0.08 Tw ( ) Tj 210.96 0 TD -0.0249 Tc 1.1849 Tw (In order) Tj 0 Tc -0.04 Tw ( ) Tj -382.2 -13.44 TD -0.0008 Tc 0.4685 Tw (for the classification results to be comparable with results presented in the literature \() Tj 403.56 0 TD 0.0135 Tc 0.0665 Tw (e.g. ) Tj -403.56 -13.44 TD -0.0181 Tc 1.7481 Tw (Fogel, Wasson & Boughton, 1995) Tj 166.2 0 TD 0 Tc 1.6544 Tw (\), the 16 records with missing values were removed) Tj 0 Tc 0.2 Tw ( ) Tj -166.2 -13.44 TD -0.0039 Tc 0.8039 Tw (from the dataset) Tj 76.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD 0.004 Tc 0.856 Tw (and no va) Tj 47.04 0 TD -0.0024 Tc 0.8024 Tw (lidation set was used) Tj 99.36 0 TD -0.0049 Tc 0.8649 Tw (. The first 400 ) Tj 0.7906 Tc 0 Tw (r) Tj 76.44 0 TD -0.0064 Tc 0.8864 Tw (ecords were then chosen) Tj 0 Tc 0.2 Tw ( ) Tj -303.48 -13.44 TD -0.0044 Tc 0.029 Tw (as the training data while the remaining 283 records constituted the testing data. ) Tj 376.32 0 TD 0 Tc -0.04 Tw ( ) Tj -376.32 -13.44 TD ( ) Tj ET endstream endobj 69 0 obj 11688 endobj 67 0 obj << /Type /Page /Parent 64 0 R /Resources << /Font << /F0 6 0 R /F1 19 0 R /F2 22 0 R /F3 36 0 R /F4 58 0 R >> /ProcSet 2 0 R >> /Contents 68 0 R >> endobj 71 0 obj << /Length 72 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj -5.88 688.8 TD /F0 11.68 Tf 0.04 Tc 0 Tw (9) Tj -414.6 -35.64 TD -0.0087 Tc 2.1187 Tw (The diabetes data set was created by Vincent Sigillito from John Hopkins University) Tj 0 Tc -0.16 Tw ( ) Tj 0 -13.44 TD 0.0033 Tc 2.5967 Tw (from a larger database he) Tj 128.4 0 TD -0.0027 Tc 2.5894 Tw (ld by the National Institute of Diabetes and Digestive and) Tj 0 Tc 0.2 Tw ( ) Tj -128.4 -13.32 TD -0.0116 Tc 0.0916 Tw (Kidney Diseases. ) Tj 84.24 0 TD 0.0073 Tc 0.0727 Tw (This dataset has also been ) Tj 124.92 0 TD -0.0039 Tc -0.1561 Tw (extensively ) Tj 56.16 0 TD 0.0097 Tc 0.0943 Tw (investigated in the literature \(e.g. ) Tj -265.32 -13.44 TD -0.021 Tc 3.101 Tw (Yao & Liu, 1997; Ortiz) Tj 121.92 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0043 Tc -0.0357 Tw (Boyer, ) Tj 37.44 0 TD -0.013 Tc 0 Tw (Herv\341s) Tj 33 0 TD -0.0494 Tc (-) Tj 3.96 0 TD 0.0094 Tc (Mart\355nez) Tj 42.24 0 TD 0 Tc -0.04 Tw ( ) Tj 5.88 0 TD -0.087 Tc 0.047 Tw (& ) Tj 15 0 TD 0.0321 Tc 0 Tw (Garc\355a) Tj 31.2 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0013 Tc (Pedrajas,) Tj 42.48 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD -0 Tc 2.9602 Tw (2005; Prechelt,) Tj 0 Tc -0.04 Tw ( ) Tj -346.8 -13.44 TD 0.0066 Tc -0.0466 Tw (1994; ) Tj 32.76 0 TD -0.0079 Tc 0 Tw (Garc\355a) Tj 30.96 0 TD -0.0494 Tc (-) Tj 3.96 0 TD -0.0146 Tc -0.0254 Tw (Pedrajas, ) Tj 48.48 0 TD -0 Tc 0 Tw (Ortiz) Tj 24 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0028 Tc -0.0428 Tw (Boyer ) Tj 34.68 0 TD 0.033 Tc 0 Tw (&) Tj 9 0 TD 0 Tc -0.04 Tw ( ) Tj 6.12 0 TD -0.013 Tc 0 Tw (Herv\341s) Tj 33 0 TD -0.0494 Tc (-) Tj 3.96 0 TD -0.0056 Tc (Mart\355nez) Tj 42.12 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 6.12 0 TD 0.01 Tc 0 Tw (2006) Tj 23.28 0 TD 0.0016 Tc 3.1984 Tw (\) and has been chosen) Tj 0 Tc 0.2 Tw ( ) Tj -305.16 -13.44 TD -0.0029 Tc 0.9229 Tw (because it represents one of the more difficult cases of the Proben1 benchmark set.) Tj 0 Tc -0.04 Tw ( ) Tj 402.24 0 TD 0.0259 Tc 0.0541 Tw (The ) Tj -402.24 -13.44 TD 0.0038 Tc 0.6162 Tw (classification is made) Tj 101.64 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0 Tc 0.6007 Tw (on 8 different inputs) Tj 96.84 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.0008 Tc 0.5758 Tw (There are a total of 768 samples available of) Tj 0 Tc -0.04 Tw ( ) Tj -208.32 -13.44 TD -0 Tc 2.1206 Tw (which 65.1% are dia) Tj 102.36 0 TD -0.001 Tc 2.121 Tw (betes negative.) Tj 0 Tc 0.08 Tw ( ) Tj 76.56 0 TD 0.0102 Tc 2.0965 Tw (No validation set was used in order to make the) Tj 0 Tc 0.08 Tw ( ) Tj -178.92 -13.44 TD -0.0024 Tc 1.5584 Tw (results comparable with those of the experiments using breast cancer data.) Tj 0 Tc -0.04 Tw ( ) Tj 366.6 0 TD 0.0127 Tc 1.5073 Tw (The testing) Tj 0 Tc -0.04 Tw ( ) Tj -366.6 -13.44 TD 0.0042 Tc -0.0189 Tw (data is made up of 192 records while the training data consists of a total of 576 records by ) Tj 0 -13.44 TD -0.0013 Tc 0.9213 Tw (combining th) Tj 62.88 0 TD -0.0018 Tc 0.9655 Tw (e training and validation data of the diabetes1 dataset. This combination is) Tj 0 Tc -0.04 Tw ( ) Tj -62.88 -13.44 TD -0.0124 Tc -0.0276 Tw (proposed ) Tj 48.84 0 TD -0.0134 Tc 3.2734 Tw (by Prechelt \(1994\)) Tj 93.36 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD -0 Tc 3.1872 Tw (for experiments that do not make use of a validation) Tj 0 Tc 0.2 Tw ( ) Tj -148.2 -13.44 TD -0.0047 Tc 1.4287 Tw (procedure. He also points out that) Tj 164.64 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0037 Tc 1.4037 Tw (the documentation) Tj 0 Tc -0.04 Tw ( ) Tj 92.28 0 TD 0.0192 Tc 1.3808 Tw (provided with) Tj 66.6 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0076 Tc 1.4076 Tw (this dataset claims) Tj 0 Tc -0.04 Tw ( ) Tj -332.16 -13.44 TD -0.0076 Tc 2.0076 Tw (that there) Tj 0 Tc -0.04 Tw ( ) Tj 50.52 0 TD -0.0208 Tc 2.0808 Tw (are no missing) Tj 0 Tc -0.04 Tw ( ) Tj 76.92 0 TD -0.0128 Tc 0 Tw (values;) Tj 33 0 TD 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD 0.04 Tc 0 Tw (h) Tj 5.88 0 TD -0.0053 Tc 2.0053 Tw (owever, there are several senseless 0 values which) Tj 0 Tc 0.2 Tw ( ) Tj -171.24 -13.44 TD -0.0176 Tc 2.3056 Tw (most probably indicate missing data. We) Tj 0 Tc -0.04 Tw ( ) Tj 206.76 0 TD 0.0573 Tc 0 Tw (follow) Tj 30.6 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD 0 Tc 0 Tw (Prechelt) Tj 38.16 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD -0.062 Tc 0 Tw (and) Tj 16.8 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD 0.0088 Tc -0.0488 Tw (nevertheless ) Tj 62.88 0 TD -0.0118 Tc 2.2518 Tw (treat these) Tj 0 Tc -0.04 Tw ( ) Tj -370.68 -13.44 TD -0.0225 Tc 0.1025 Tw (samples as ) Tj 53.16 0 TD -0.0088 Tc -0.1512 Tw (real thereby ) Tj 58.32 0 TD -0.0153 Tc -0.1447 Tw (probably ) Tj 44.28 0 TD 0.013 Tc -0.053 Tw (introducing ) Tj 56.88 0 TD 0.0159 Tc -0.0559 Tw (some ) Tj 27.6 0 TD -0.004 Tc -0.036 Tw (additional ) Tj 49.68 0 TD -0.0209 Tc 0.1009 Tw (noise into the dataset.) Tj 101.28 0 TD 0 Tc -0.04 Tw ( ) Tj -373.8 -13.44 TD ( ) Tj -17.4 -13.32 TD -0.0267 Tc 0 Tw (3.2) Tj 14.64 0 TD /F4 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 2.88 0 TD /F0 11.68 Tf -0.0259 Tc 0 Tw (Experiment) Tj 54.48 0 TD -0.0148 Tc 0.0148 Tw (al setup and i) Tj 61.92 0 TD -0 Tc 0 Tw (mplementation) Tj 70.08 0 TD 0 Tc -0.04 Tw ( ) Tj -204 -13.44 TD ( ) Tj 0 -13.44 TD -0.0141 Tc -0.0259 Tw (The ) Tj 23.04 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 29.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD -0.001 Tc 2.001 Tw (used in the) Tj 0 Tc -0.16 Tw ( ) Tj 59.64 0 TD -0.0054 Tc 0.0854 Tw (classification ) Tj 66.48 0 TD 0.0089 Tc 1.9911 Tw (experiments were) Tj 0 Tc -0.04 Tw ( ) Tj 89.76 0 TD -0 Tc 0.0805 Tw (basic ) Tj 28.92 0 TD -0.0153 Tc 0 Tw (feed) Tj 20.04 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0161 Tc 0.0639 Tw (forward ) Tj 42 0 TD -0.0136 Tc 0 Tw (multi) Tj 24.6 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0343 Tc 0.0457 Tw (layer ) Tj -396.96 -13.44 TD -0 Tc 0.6807 Tw (perceptrons ) Tj 0.6706 Tc 0 Tw (\() Tj 62.04 0 TD -0.0447 Tc (MLP) Tj 23.76 0 TD 0.0165 Tc (s) Tj 4.68 0 TD -0.0494 Tc (\)) Tj 3.84 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0052 Tc 0.6748 Tw (because these have been identified) Tj 0 Tc 0.08 Tw ( ) Tj 168 0 TD -0.0107 Tc 0.8107 Tw (by Yao \(1999\)) Tj 69.48 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0165 Tc 0.0635 Tw (to ) Tj 12.72 0 TD 0.0055 Tc -0.1655 Tw (likely ) Tj 30.24 0 TD 0.002 Tc -0.042 Tw (increase ) Tj -382.2 -13.44 TD -0.0074 Tc 1.9024 Tw (the harmful effects of traditional crossover due to thei) Tj 266.52 0 TD -0.0009 Tc 1.8809 Tw (r distributed representation) Tj 129.6 0 TD -0.0565 Tc 1.9365 Tw (, and) Tj 0 Tc -0.04 Tw ( ) Tj -396.12 -13.44 TD 0.0056 Tc 0.5544 Tw (since they are still used in the context of breast cancer diagnosis \(e.g. Abass, 2002\)) Tj 395.76 0 TD -0.04 Tc 0 Tw (. ) Tj 6.36 0 TD 0.0659 Tc 0.0141 Tw (The ) Tj -402.12 -13.44 TD -0 Tc 1.5203 Tw (activation function used was) Tj 0 Tc -0.04 Tw ( ) Tj 142.32 0 TD -0.0377 Tc 0 Tw (the) Tj 14.28 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.0035 Tc 0 Tw (standard) Tj 39.6 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.0222 Tc 0.0578 Tw (sigmoid ) Tj 42.24 0 TD -0.0176 Tc -0.0224 Tw (\(logistic\) ) Tj 46.56 0 TD -0.0212 Tc 0 Tw (function) Tj 38.88 0 TD -0.04 Tc (. ) Tj 7.32 0 TD 0.0125 Tc 1.5475 Tw (Each node has a) Tj 0 Tc 0.08 Tw ( ) Tj -340.08 -13.44 TD -0.0037 Tc 0.2757 Tw (bias term associated with it. ) Tj 134.64 0 TD -0.0141 Tc -0.0259 Tw (The ) Tj 21.36 0 TD 0.047 Tc 0 Tw (ANN) Tj 25.32 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0617 Tc 0 Tw (archi) Tj 23.28 0 TD -0.0054 Tc 0.3104 Tw (tecture used to classify the breast cancer data ) Tj -207.84 -13.44 TD -0.0009 Tc 1.9529 Tw (had 9 inputs, 9 hidden ) Tj 1.72 Tc 0 Tw (n) Tj 122.04 0 TD -0.022 Tc (ode) Tj 16.8 0 TD 0.0015 Tc 1.9985 Tw (s and 1 output ) Tj 1.96 Tc 0 Tw (n) Tj 82.56 0 TD -0.022 Tc (ode) Tj 16.8 0 TD 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD -0.0494 Tc 0 Tw (\() Tj 3.84 0 TD -0.0198 Tc 0.0998 Tw (again ) Tj 30.12 0 TD -0.0204 Tc -0.2596 Tw (following ) Tj 50.4 0 TD -0.0141 Tc 2.0141 Tw (Fogel, Wasson and) Tj 0 Tc 0.2 Tw ( ) Tj -327.48 -13.44 TD -0.0042 Tc -0.0358 Tw (Boughton, ) Tj 53.04 0 TD 0.01 Tc 0 Tw (1995) Tj 23.4 0 TD -0.0494 Tc (\)) Tj 3.96 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.0134 Tc 1.1706 Tw (for a total of 100 weights) Tj 123.72 0 TD 0.0093 Tc 1.1679 Tw (. The architecture used for the diabetes data) Tj 0 Tc 0.08 Tw ( ) Tj -208.2 -13.44 TD -0.0024 Tc 1.0596 Tw (had 8 inputs, two layers with 9 hidden) Tj 185.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD 0.04 Tc 0 Tw (n) Tj 5.76 0 TD 0.0176 Tc (odes) Tj 21.36 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.0206 Tc 0.0594 Tw (each ) Tj 25.44 0 TD -0 Tc 1.04 Tw (and 1 output ) Tj 1 Tc 0 Tw (n) Tj 70.32 0 TD 0.018 Tc (ode) Tj 16.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD 0.0099 Tc 1.0601 Tw (for a total of 181) Tj 0 Tc 0.2 Tw ( ) Tj -337.56 -13.44 TD -0.0138 Tc 0 Tw (weights) Tj 36.24 0 TD -0.04 Tc (. ) Tj 6 0 TD -0.005 Tc 0.253 Tw (The architectures were fully interconnected ) Tj 207.12 0 TD 0.0282 Tc 0 Tw (so) Tj 10.44 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0428 Tc 0.1572 Tw (that e) Tj 25.8 0 TD -0.0439 Tc 0.0039 Tw (ach ) Tj 19.32 0 TD 0.0235 Tc 0 Tw (node) Tj 22.68 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0083 Tc 0.1683 Tw (of every layer ) Tj 68.4 0 TD 0.0906 Tc 0 Tw (wa) Tj 13.68 0 TD 0.0165 Tc -0.0565 Tw (s ) Tj -415.92 -13.44 TD 0.0012 Tc 1.5188 Tw (connected with every ) Tj 1.48 Tc 0 Tw (n) Tj 113.16 0 TD 0.098 Tc (ode) Tj 16.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.0235 Tc 1.4965 Tw (of the) Tj 0 Tc 0.08 Tw ( ) Tj 33 0 TD -0.0073 Tc -0.2727 Tw (immediately ) Tj 62.76 0 TD 0.0062 Tc 1.5138 Tw (following layer. The architectures were) Tj 0 Tc 0.08 Tw ( ) Tj -230.28 -13.44 TD -0.001 Tc 0.051 Tw (genetically represented by a lis) Tj 144.84 0 TD 0.0225 Tc 0.0575 Tw (t of floating) Tj 55.2 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0067 Tc 0.0733 Tw (point numbers ) Tj 70.2 0 TD 0.0148 Tc -0.0205 Tw (with the length of the list being ) Tj -274.08 -13.44 TD -0.0069 Tc 2.236 Tw (equal to the number of connection weights of the encoded network architecture.) Tj 397.08 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD 0.0259 Tc -0.0659 Tw (The ) Tj -402.24 -13.32 TD -0.0049 Tc 0.0316 Tw (range of the weights was limited to the single pre) Tj 229.92 0 TD 0.0138 Tc -0.0538 Tw (cision C++ floating) Tj 91.08 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0178 Tc 0.0978 Tw (point range.) Tj 55.8 0 TD 0 Tc -0.04 Tw ( ) Tj -380.64 -13.44 TD ( ) Tj 0 -13.44 TD 0 Tc 1.7197 Tw (The weights were initialize) Tj 132 0 TD -0.0033 Tc 1.7783 Tw (d by drawing random numbers from the standard Gaussian) Tj 0 Tc 0.2 Tw ( ) Tj -132 -13.44 TD 0.0071 Tc -0.0471 Tw (distribution. ) Tj 61.32 0 TD -0.0087 Tc 1.5287 Tw (The mutation operator was implemented as a probabilistic change of each) Tj 0 Tc 0.08 Tw ( ) Tj -61.32 -13.44 TD 0.001 Tc 2.019 Tw (connection weight by a small random floating) Tj 226.56 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0053 Tc 1.9707 Tw (point number drawn from the standard) Tj 0 Tc 0.08 Tw ( ) Tj -230.4 -13.44 TD -0 Tc 0 Tw (Gaus) Tj 24 0 TD -0.0202 Tc 1.4202 Tw (sian distribution. Three trad) Tj 133.68 0 TD 0.0037 Tc 0 Tw (itional) Tj 29.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0 Tc 1.4 Tw (kinds of) Tj 0 Tc 0.08 Tw ( ) Tj 43.68 0 TD -0.0115 Tc -0.0285 Tw (standard ) Tj 43.8 0 TD -0.0077 Tc 1.4077 Tw (crossover operators) Tj 0 Tc -0.04 Tw ( ) Tj 96.72 0 TD -0.0047 Tc 0.0847 Tw (\(uniform, ) Tj -376.08 -13.44 TD -0.022 Tc 0 Tw (one) Tj 16.8 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0036 Tc 0.3164 Tw (point and two) Tj 64.92 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD 0.0094 Tc 0.0706 Tw (point\) ) Tj 31.2 0 TD -0.0137 Tc 0.3537 Tw (were tested in a variety of ) Tj 126.12 0 TD -0.033 Tc -0.007 Tw (GA ) Tj 20.04 0 TD -0.0368 Tc 0 Tw (settings) Tj 35.76 5.4 TD /F0 7.8256 Tf 0.0472 Tc (1) Tj 3.96 -5.4 TD /F0 11.68 Tf -0.04 Tc (. ) Tj 6.48 0 TD -0.0248 Tc 0.3148 Tw (While there are certain ) Tj -313.08 -13.44 TD -0.0052 Tc 0.4998 Tw (crossover operators which are more effective when used in combination with real) Tj 385.56 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0098 Tc 0.0898 Tw (valued ) Tj -389.4 -13.44 TD -0.0054 Tc 0.8054 Tw (genotypic representati) Tj 104.16 0 TD 0.0322 Tc -0.0722 Tw (ons ) Tj 20.04 0 TD -0.0494 Tc 0 Tw (\() Tj 3.84 0 TD -0.0128 Tc 0.8128 Tw (such as directional crossover) Tj 136.92 0 TD -0.0494 Tc 0 Tw (\)) Tj 3.84 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0113 Tc 0.8913 Tw (these would generally decrease) Tj 0 Tc 0.08 Tw ( ) Tj -272.52 -13.44 TD -0.0094 Tc 0.5994 Tw (the number of generations required until population convergence. ) Tj 0.567 Tc 0 Tw (A) Tj 321.84 0 TD -0.0032 Tc 0.5632 Tw (s such the) Tj 0 Tc -0.04 Tw ( ) Tj 50.64 0 TD -0.0015 Tc -0.0385 Tw (traditional ) Tj -372.48 -13.44 TD 0 Tc 0.0798 Tw (crossover ) Tj 50.28 0 TD -0.0024 Tc -0.0376 Tw (operators ) Tj 48.84 0 TD 0.0162 Tc 2.5838 Tw (chosen for) Tj 51.72 0 TD 0 Tc -0.04 Tw ( ) Tj 5.4 0 TD 0.0102 Tc -0.0502 Tw (our ) Tj 21.24 0 TD 0.0026 Tc 0 Tw (experiments) Tj 57 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD 0 Tc 2.6299 Tw (represent a conservative choice with) Tj 0 Tc 0.2 Tw ( ) Tj -240 -13.44 TD -0.0047 Tc 0.9247 Tw (regard to ) Tj 0.953 Tc 0 Tw (t) Tj 49.92 0 TD -0.053 Tc 0.973 Tw (he co) Tj 25.8 0 TD 0.003 Tc 0.917 Tw (nvergence argument) Tj 96 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD 0.0018 Tc 0.9662 Tw (The fitness function used by the) Tj 0 Tc 0.08 Tw ( ) Tj 158.28 0 TD 0.0635 Tc 0 Tw (GAs) Tj 21.48 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0225 Tc 1.1825 Tw (evaluates an) Tj 0 Tc 0.08 Tw ( ) Tj -362.16 -26.28 TD -0.04 Tw ( ) Tj 116.76 0 TD ( ) Tj ET 88.08 123.72 140.16 0.6 re f BT 228.24 121.2 TD ( ) Tj -140.16 -8.04 TD /F0 7.8256 Tf 0.0472 Tc 0 Tw (1) Tj 3.96 -5.4 TD /F0 9.6944 Tf 0 Tc -0.0236 Tw ( ) Tj 2.52 0 TD 0.0145 Tc 0.0113 Tw (The GA software for this work was based on the GAlib package, written by Matthew Wall at MIT.) Tj 385.2 0 TD 0 Tc -0.0236 Tw ( ) Tj ET endstream endobj 72 0 obj 14877 endobj 70 0 obj << /Type /Page /Parent 64 0 R /Resources << /Font << /F0 6 0 R /F4 58 0 R >> /ProcSet 2 0 R >> /Contents 71 0 R >> endobj 74 0 obj << /Length 75 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (10) Tj ET Q BT 88.08 725.04 TD /F0 11.68 Tf -0.0035 Tc 3.6835 Tw (individual by testing the) Tj 0 Tc -0.04 Tw ( ) Tj 130.68 0 TD 0.04 Tc 0 Tw (d) Tj 5.88 0 TD 0.0021 Tc 3.6779 Tw (ecoded ANN on) Tj 0 Tc 0.2 Tw ( ) Tj 89.76 0 TD 0.0023 Tc 0 Tw (the) Tj 14.28 0 TD 0 Tc -0.04 Tw ( ) Tj 6.72 0 TD 0.0062 Tc 3.5838 Tw (given training set. The percentage) Tj 0 Tc 0.2 Tw ( ) Tj -247.32 -13.44 TD -0.0137 Tc 1.0777 Tw (accuracy achieved on the classification task) Tj 0 Tc -0.16 Tw ( ) Tj 212.76 0 TD -0.007 Tc 0 Tw (i) Tj 3.36 0 TD -0.0046 Tc 1.0446 Tw (s then used as that individual\222s fitness. No) Tj 0 Tc 0.08 Tw ( ) Tj -216.12 -13.32 TD -0.0244 Tc 0.2244 Tw (scaling was app) Tj 74.16 0 TD 0.0066 Tc 0.0992 Tw (lied to these scores. The selection mechanism used in all test runs was the ) Tj -74.16 -13.44 TD -0.0057 Tc 0.3257 Tw (popular roulette) Tj 74.52 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.012 Tc 0.308 Tw (wheel selec) Tj 54.6 0 TD 0.0165 Tc 0 Tw (tion) Tj 18.24 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.02 Tc 0 Tw (method) Tj 34.92 0 TD 0.0047 Tc 0.2553 Tw (, where each individual ) Tj 113.28 0 TD -0.1177 Tc 0 Tw (get) Tj 14.16 0 TD 0.0165 Tc (s) Tj 4.56 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0078 Tc 0.2678 Tw (picked for mating in ) Tj -324.6 -13.44 TD 0.0028 Tc -0.0308 Tw (a probabilistic manner which is proportional to the individual\222s fitness score.) Tj 359.16 0 TD 0 Tc -0.04 Tw ( ) Tj -359.16 -13.44 TD ( ) Tj 0 -13.44 TD -0.0259 Tc 2.0859 Tw (For most ) Tj 2.0141 Tc 0 Tw (e) Tj 53.88 0 TD -0.0017 Tc 2.0117 Tw (xperiments the population size was set to 50 individuals and run for 1000) Tj 0 Tc 0.2 Tw ( ) Tj -53.88 -13.44 TD -0.0067 Tc 1.1967 Tw (generations; when a population size of 500 was used) Tj 255.24 0 TD -0.0053 Tc 1.1653 Tw (, a typically large size \(e.g.) Tj 0 Tc 0.08 Tw ( ) Tj 135.84 0 TD -0.0212 Tc 0.1012 Tw (Fogel, ) Tj -391.08 -13.44 TD 0.0008 Tc 1.1992 Tw (Wasson & Boughton, 1995) Tj 130.68 0 TD -0.0447 Tc 0 Tw (\),) Tj 6.84 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD -0.0053 Tc 1.1893 Tw (the number of generations was reduced to 100 in order to) Tj 0 Tc 0.08 Tw ( ) Tj -141.6 -13.44 TD -0.0131 Tc 1.8931 Tw (make the ) Tj 1.913 Tc 0 Tw (t) Tj 52.32 0 TD 0.0039 Tc 1.8911 Tw (wo settings comparable with regard to computational cost. All) Tj 306.36 0 TD 0 Tc -0.04 Tw ( ) Tj 4.8 0 TD -0.0083 Tc -0.0317 Tw (experiments ) Tj -363.48 -13.44 TD -0.0015 Tc 0.1215 Tw (were conducted with ) Tj 100.56 0 TD -0 Tc 0 Tw (two) Tj 17.76 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0175 Tc 0.0625 Tw (different types of ) Tj 83.88 0 TD -0.033 Tc 0 Tw (GA) Tj 16.8 0 TD 0.08 Tc (. ) Tj 6.12 0 TD 0.0737 Tc (One) Tj 19.44 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0037 Tc 0.0837 Tw (variation was ) Tj 65.88 0 TD 0.0531 Tc 0.0269 Tw (a steady) Tj 38.16 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0 Tc 0.1393 Tw (state GA ) Tj 44.4 0 TD -0 Tc -0.04 Tw (that ) Tj -402.96 -13.44 TD -0.0038 Tc 1.6438 Tw (uses overlapping populations) Tj 139.56 0 TD -0.04 Tc 0 Tw (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD 0.018 Tc 0 Tw (and) Tj 16.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD -0.0075 Tc 1.6475 Tw (it was arbitrarily decided that the fittest 25%) Tj 219.12 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD -0.0647 Tc 0.0247 Tw (of ) Tj 14.16 0 TD 0.0023 Tc 0 Tw (the) Tj 14.16 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD 0.0066 Tc 0 Tw (popul) Tj 26.64 0 TD 0.008 Tc 0.072 Tw (ation ) Tj 26.28 0 TD -0.0082 Tc 0.0882 Tw (overlaps between generations) Tj 138.24 0 TD -0.0022 Tc 0.0222 Tw (. A microbial GA ) Tj 84.72 0 TD 0.0159 Tc -0.0559 Tw (\(Harvey, 1996\)) Tj 71.52 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0114 Tc -0.0286 Tw (was also tested) Tj 70.08 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0074 Tc 2.8074 Tw (as an example of) Tj 0 Tc -0.04 Tw ( ) Tj 93 0 TD -0.0046 Tc 2.8046 Tw (a very minimal GA.) Tj 101.88 0 TD 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD -0.0021 Tc 2.8421 Tw (The microbial GA uses a modified form of) Tj 0 Tc 0.08 Tw ( ) Tj -200.52 -13.44 TD 0.004 Tc 1.396 Tw (tournament selection) Tj 99 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0104 Tc 1.5304 Tw (in which) Tj 42.12 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0023 Tc 1.4263 Tw (two random members of the population) Tj 191.76 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.0049 Tc 1.4049 Tw (get selected) Tj 56.16 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD 0.007 Tc 0.193 Tw (an ) Tj -409.44 -13.44 TD -0.011 Tc -0.149 Tw (offspring ) Tj 46.68 0 TD 0.0647 Tc -0.1047 Tw (is ) Tj 12 0 TD -0.0066 Tc 1.1066 Tw (generated as usual) Tj 0 Tc 0.08 Tw ( ) Tj 91.68 0 TD -0.0026 Tc 1.1326 Tw (by applying crossover and mutation) Tj 171.72 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD -0.062 Tc 0 Tw (and) Tj 16.92 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD 0.0047 Tc 0 Tw (is) Tj 7.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD 0.0118 Tc 0.0682 Tw (then ) Tj 24.12 0 TD 0.0373 Tc 1.0027 Tw (used to) Tj 0 Tc 0.2 Tw ( ) Tj -385.8 -13.44 TD -0.0157 Tc 0 Tw (replac) Tj 28.56 0 TD -0.0259 Tc (e) Tj 5.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0215 Tc 0.6615 Tw (the less fit parent.) Tj 0 Tc -0.04 Tw ( ) Tj 88.08 0 TD -0.0079 Tc 0.3279 Tw (In each ) Tj 38.04 0 TD -0.0196 Tc -0.1404 Tw (effective ) Tj 44.28 0 TD -0.0494 Tc 0 Tw (\221) Tj 3.96 0 TD 0.0019 Tc (generation) Tj 49.2 0 TD -0.0494 Tc (\222) Tj 3.96 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.007 Tc 0 Tw (t) Tj 3.24 0 TD -0.002 Tc 0.562 Tw (his process is repeated as many) Tj 0 Tc -0.04 Tw ( ) Tj -271.44 -13.32 TD 0 Tc 2.5741 Tw (times as there are individuals in the population. Since the fitter parent does not get) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD 0.033 Tc 0 Tw (m) Tj 9 0 TD -0.0069 Tc 1.7669 Tw (odified during reproduction the microbial GA can be said to have) Tj 0 Tc -0.04 Tw ( ) Tj 327.48 0 TD 0.0038 Tc 1.8762 Tw (50% generational) Tj 0 Tc 0.08 Tw ( ) Tj -336.48 -13.44 TD -0.0498 Tc 0 Tw (overlap) Tj 34.92 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0008 Tc -0.0408 Tw (on average) Tj 51 0 TD -0.04 Tc 0 Tw (.) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj -91.8 -13.44 TD ( ) Tj 0 -13.44 TD -0.0073 Tc 3.1473 Tw (Each of these) Tj 0 Tc -0.04 Tw ( ) Tj 75.24 0 TD 0.0082 Tc -0.0482 Tw (simple ) Tj 37.32 0 TD 0.0635 Tc 0 Tw (GAs) Tj 21.36 0 TD 0 Tc -0.04 Tw ( ) Tj 6.12 0 TD -0.0045 Tc 3.2045 Tw (was tested with) Tj 0 Tc 0.08 Tw ( ) Tj 84.48 0 TD -0 Tc -0.0395 Tw (basic ) Tj 30.12 0 TD 0.0165 Tc 3.0635 Tw (uniform, one) Tj 63.48 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0073 Tc 3.1473 Tw (point and two) Tj 70.44 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0028 Tc (point) Tj 24 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD 0.0026 Tc 0.3974 Tw (crossover along with mutation) Tj 142.92 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0061 Tc 0.2061 Tw (and also ) Tj 42.12 0 TD 0.0106 Tc -0.0506 Tw (just ) Tj 20.28 0 TD -0.0071 Tc 0.3871 Tw (with mutation alone) Tj 94.2 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.0553 Tc 0.3247 Tw (as the c) Tj 35.76 0 TD 0.0115 Tc 0.3085 Tw (ontrol case) Tj 51.36 0 TD -0.0206 Tc 0.2206 Tw (. The ) Tj -396.12 -13.44 TD -0.015 Tc 0.975 Tw (probability of a particular gene getting mutated) Tj 0 Tc -0.04 Tw ( ) Tj 229.68 0 TD -0.14 Tc -0.02 Tw (by ) Tj 15.36 0 TD -0.0024 Tc 0.9224 Tw (adjusting it with a value drawn from) Tj 0 Tc 0.08 Tw ( ) Tj -245.04 -13.44 TD -0.0017 Tc 1.0417 Tw (the standard Gaussian distribution) Tj 0 Tc 0.08 Tw ( ) Tj 166.32 0 TD -0.0141 Tc -0.0259 Tw (was ) Tj 22.08 0 TD -0.0207 Tc 1.0607 Tw (set to) Tj 0 Tc -0.04 Tw ( ) Tj 29.88 0 TD 0.0188 Tc 1.0212 Tw (1%. The steady) Tj 74.16 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.002 Tc 1.082 Tw (state GA was additionally) Tj 0 Tc -0.16 Tw ( ) Tj -296.28 -13.44 TD -0.0062 Tc 2.0062 Tw (tested with a higher mutation probability of 2.5%) Tj 243.84 0 TD 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD -0.0113 Tc 2.0113 Tw (to get an ind) Tj 63.96 0 TD -0.0156 Tc 1.9756 Tw (ication of whether the) Tj 0 Tc -0.04 Tw ( ) Tj -312.72 -13.44 TD 0.003 Tc 0.197 Tw (mutation rate has any effects on the permutation problem) Tj 268.92 0 TD -0.04 Tc 0 Tw (. ) Tj 6.12 0 TD 0.0039 Tc 0.1761 Tw (In order to compare the impact ) Tj -275.04 -13.44 TD 0.0059 Tc 0.6741 Tw (of crossover in relation to) Tj 0 Tc 0.08 Tw ( ) Tj 126.48 0 TD 0.0423 Tc 0 Tw (the) Tj 14.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0415 Tc 0 Tw (probability) Tj 51.12 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0095 Tc 0.7695 Tw (of its application during) Tj 0 Tc -0.16 Tw ( ) Tj 117.6 0 TD -0.0135 Tc 0.8135 Tw (the generation of new) Tj 0 Tc -0.04 Tw ( ) Tj -316.8 -13.44 TD 0.029 Tc 0 Tw (offspring) Tj 42.72 0 TD 0.08 Tc 1.08 Tw (, ) Tj 1.1741 Tc 0 Tw (e) Tj 12.24 0 TD 0.0041 Tc 1.1759 Tw (ach crossover operator was tested with ) Tj 1.193 Tc 0 Tw (t) Tj 194.04 0 TD 0.0064 Tc 1.1536 Tw (wo different probabilities) Tj 121.2 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD -0.0494 Tc 0 Tw (\() Tj 3.84 0 TD 0.0008 Tc 1.1592 Tw (10% and) Tj 0 Tc 0.2 Tw ( ) Tj -378.12 -13.44 TD -0.0565 Tc 0 Tw (60%) Tj 21.36 0 TD 0.0153 Tc 0.0647 Tw (\), ) Tj 10.56 0 TD 0.022 Tc 0.778 Tw (and hence) Tj 47.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0008 Tc 0.8292 Tw (crossover was not used in) Tj 0 Tc 0.08 Tw ( ) Tj 127.08 0 TD 0.0011 Tc 0.8589 Tw (the generation of) Tj 0 Tc -0.04 Tw ( ) Tj 84.72 0 TD -0.0043 Tc -0.1557 Tw (every ) Tj 29.64 0 TD -0.0087 Tc 0.9287 Tw (new individual) Tj 70.8 0 TD -0.04 Tc 0 Tw (. ) Tj 6.6 0 TD -0.0141 Tc -0.0259 Tw (The ) Tj -402.36 -13.44 TD -0.0069 Tc 1.7669 Tw (microbial GA) Tj 66.24 0 TD 0.007 Tc 1.777 Tw (, which depends on a high crossover probability to implement selection,) Tj 354.24 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.009 Tc 0.839 Tw (was extended to deal with cases where no crossover) Tj 248.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0 Tc 0.7995 Tw (has taken place) Tj 72.96 0 TD -0.007 Tc 0 Tw (;) Tj 3.24 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.033 Tc 0 Tw (w) Tj 8.4 0 TD 0.0072 Tc 0.7928 Tw (hen this happens) Tj 0 Tc -0.04 Tw ( ) Tj -340.92 -13.32 TD -0.0064 Tc 0.1584 Tw (the offspring is generated by mutating the fitter parent and replacing the less fit one. ) Tj 397.68 0 TD 0.0235 Tc 0.0565 Tw (Note ) Tj -397.68 -13.44 TD -0.009 Tc 0.3719 Tw (that this creates a strong selection pressure as less fit individuals are completely removed ) Tj 0 -13.44 TD 0.0109 Tc -0.0209 Tw (from the population, whereas they) Tj 159.84 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0014 Tc -0.0014 Tw (are only modified whenever crossover is applied.) Tj 229.92 0 TD 0 Tc -0.04 Tw ( ) Tj -392.76 -13.44 TD ( ) Tj 0 -13.44 TD 0.0071 Tc 1.2822 Tw (All the combinations of settings described above were tested on both the breast cancer) Tj 0 Tc 0.08 Tw ( ) Tj T* 0.0021 Tc 0.0179 Tw (and diabetes datasets) Tj 97.92 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD ( ) Tj -86.4 -13.44 TD ( ) Tj -17.4 -13.68 TD /F1 11.68 Tf 0.06 Tc 0 Tw (4.) Tj 8.76 0 TD /F2 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 8.76 0 TD /F1 11.68 Tf -0.033 Tc 0 Tw (R) Tj 8.4 0 TD -0.0306 Tc (esults) Tj 27.96 0 TD 0 Tc -0.04 Tw ( ) Tj -53.88 -13.2 TD /F0 11.68 Tf ( ) Tj 0 -13.44 TD -0.0565 Tc 0 Tw (T) Tj 7.08 0 TD 0.005 Tc 2.5436 Tw (he effect of crossover on the evolution of) Tj 0 Tc -0.04 Tw ( ) Tj 215.88 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 29.88 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD -0.0141 Tc 0 Tw (was) Tj 18.12 0 TD 0 Tc -0.04 Tw ( ) Tj 5.52 0 TD 0.0037 Tc 2.5563 Tw (analyzed from two different) Tj 0 Tc 0.08 Tw ( ) Tj -282 -13.44 TD -0.0118 Tc 0 Tw (per) Tj 14.88 0 TD -0.011 Tc (spectives) Tj 42.72 0 TD -0.007 Tc (:) Tj 3.36 0 TD 0 Tc -0.04 Tw ( ) Tj 8.28 0 TD 0.0447 Tc 0 Tw (\(i\)) Tj 11.04 0 TD 0 Tc -0.04 Tw ( ) Tj 8.28 0 TD 0 Tc 5.4108 Tw (the generalization ability of the evolved solutions, namely) Tj 0 Tc -0.28 Tw ( ) Tj 317.4 0 TD 0.0823 Tc -0.0023 Tw (the ) Tj -405.96 -13.44 TD -0.0054 Tc 0.0854 Tw (classification ) Tj 65.04 0 TD 0.0476 Tc 0 Tw (accuracy) Tj 41.52 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0181 Tc 0.5419 Tw (that the) Tj 0 Tc -0.04 Tw ( ) Tj 38.88 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 29.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0182 Tc 0.5818 Tw (achieve on the testing) Tj 103.44 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0253 Tc 0 Tw (data) Tj 19.44 0 TD 0.0176 Tc 0.5424 Tw (, and \(ii\)) Tj 41.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0 Tc 0.0795 Tw (computational ) Tj -353.64 -13.44 TD 0.0049 Tc 1.2751 Tw (efficiency in terms of) Tj 0 Tc 0.08 Tw ( ) Tj 108.36 0 TD 0.0055 Tc 1.3145 Tw (the number of evaluations required to evolve) Tj 0 Tc -0.04 Tw ( ) Tj 222 0 TD -0.0131 Tc 1.2931 Tw (a particular) Tj 54 0 TD 0 Tc -0.04 Tw ( ) Tj 4.2 0 TD 0.0212 Tc 0 Tw (weight) Tj 31.92 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.004 Tc 0 Tw (configuration) Tj 62.88 0 TD -0.04 Tc (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0066 Tc 0.7866 Tw (This is a pragmatic choice since ) Tj 0.7906 Tc 0 Tw (f) Tj 160.8 0 TD 0.0055 Tc (itness) Tj 26.64 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0188 Tc 0.9388 Tw (evaluations are) Tj 0 Tc -0.04 Tw ( ) Tj 74.64 0 TD -0.0089 Tc -0.1511 Tw (typically ) Tj 44.4 0 TD 0.0299 Tc 0.7701 Tw (the most) Tj 0 Tc 0.08 Tw ( ) Tj ET endstream endobj 75 0 obj 14205 endobj 73 0 obj << /Type /Page /Parent 64 0 R /Resources << /Font << /F0 6 0 R /F1 19 0 R /F2 22 0 R >> /ProcSet 2 0 R >> /Contents 74 0 R >> endobj 77 0 obj << /Length 78 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (11) Tj ET Q BT 88.08 725.04 TD /F0 11.68 Tf -0 Tc 5.3805 Tw (computationally expensive part of the evolutionary process) Tj 308.64 0 TD -0.04 Tc 0 Tw (. ) Tj 11.16 0 TD -0.0075 Tc 5.3675 Tw (A summary of ) Tj 5.393 Tc 0 Tw (t) Tj 89.76 0 TD -0.053 Tc 0.013 Tw (he ) Tj -409.56 -13.44 TD 0.0058 Tc 0.0342 Tw (classification accuracy results ) Tj 142.8 0 TD 0.1247 Tc 0 Tw (is) Tj 7.92 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0075 Tc 0.1325 Tw (presented first followed by a summary of the evaluat) Tj 247.2 0 TD 0.0224 Tc -0.0624 Tw (ions ) Tj -400.92 -13.32 TD -0.0089 Tc 2.1289 Tw (required to achieve those results.) Tj 161.64 0 TD 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD -0.0059 Tc 2.0959 Tw (The following notation is used:) Tj 0 Tc -0.04 Tw ( ) Tj 159.24 0 TD /F3 11.68 Tf -0.033 Tc 0 Tw (m) Tj 8.28 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD -0.01 Tc 2.07 Tw (= probability of) Tj 0 Tc -0.04 Tw ( ) Tj -343.08 -13.44 TD -0.0018 Tc 0 Tw (mutation) Tj 41.52 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.04 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 6 0 TD 0.0096 Tc 2.9904 Tw (= probability of crossover) Tj 130.32 0 TD -0.04 Tc 0 Tw (,) Tj 3.12 0 TD 0 Tc -0.04 Tw ( ) Tj 5.88 0 TD -0.0069 Tc 3.1269 Tw (uni. = uniform crossover) Tj 124.8 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD 0.04 Tc 0 Tw (1) Tj 5.76 0 TD -0.0494 Tc (-) Tj 3.96 0 TD 0.0711 Tc 2.8889 Tw (p. = one) Tj 44.16 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD 0.0212 Tc 0.0588 Tw (point ) Tj -396.36 -13.44 TD -0.0131 Tc 0 Tw (crossover) Tj 44.64 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.04 Tc 0 Tw (2) Tj 5.88 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0021 Tc 0.0179 Tw (p. = two) Tj 38.76 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0094 Tc -0.0306 Tw (point crossover) Tj 71.52 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0069 Tc 0.0269 Tw (pop. size = population size) Tj 125.04 0 TD 0.08 Tc 0 Tw (. ) Tj 5.88 0 TD 0 Tc -0.04 Tw ( ) Tj -311.28 -13.44 TD ( ) Tj 0 -13.44 TD -0.0267 Tc 0 Tw (4.1) Tj 14.64 0 TD /F4 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 2.88 0 TD /F0 11.68 Tf -0.0182 Tc 0 Tw (Test) Tj 20.04 0 TD 0.0643 Tc (ing) Tj 14.88 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.067 Tc 0 Tw (da) Tj 11.04 0 TD 0.0204 Tc -0.0604 Tw (ta c) Tj 16.56 0 TD 0.0044 Tc 0.0756 Tw (lassification accuracy) Tj 100.92 0 TD 0 Tc -0.04 Tw ( ) Tj -183.84 -13.44 TD ( ) Tj 0 -13.44 TD -0.011 Tc 0.121 Tw (A summary of the breast cancer and diabetes test) Tj 229.56 0 TD 0.1043 Tc 0 Tw (ing) Tj 14.76 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0089 Tc 0.1789 Tw (data classification accuracy achieved ) Tj -247.44 -13.44 TD -0.0143 Tc 0.6943 Tw (by the evolved) Tj 0 Tc 0.08 Tw ( ) Tj 73.44 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 29.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.018 Tc 0.698 Tw (as a result of) Tj 61.2 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.0032 Tc 0.6432 Tw (various GA settings can be found in Tables 1 and) Tj 0 Tc 0.08 Tw ( ) Tj 239.76 0 TD 0.04 Tc 0 Tw (2) Tj 6 0 TD 0.08 Tc (, ) Tj -417.48 -13.44 TD -0.0244 Tc (respectively.) Tj 59.28 0 TD 0 Tc -0.04 Tw ( ) Tj 7.2 0 TD -0.0082 Tc 0.0882 Tw (To ) Tj 20.16 0 TD 0.0244 Tc 0.0556 Tw (check ) Tj 34.56 0 TD 0.0918 Tc 0 Tw (if) Tj 7.2 0 TD 0 Tc -0.04 Tw ( ) Tj 7.2 0 TD 0.0035 Tc 4.2765 Tw (the use of) Tj 0 Tc -0.04 Tw ( ) Tj 61.2 0 TD -0.0053 Tc 4.2853 Tw (crossover had) Tj 0 Tc -0.04 Tw ( ) Tj 76.08 0 TD -0.022 Tc -0.138 Tw (any ) Tj 24 0 TD 0 Tc 0 Tw (significant) Tj 49.44 0 TD 0 Tc -0.04 Tw ( ) Tj 7.2 0 TD -0.0088 Tc 4.3488 Tw (effect on the) Tj 0 Tc -0.04 Tw ( ) Tj -353.52 -13.44 TD -0.0093 Tc 3.0893 Tw (classification accuracy of the evolved) Tj 0 Tc 0.08 Tw ( ) Tj 193.8 0 TD 0.0094 Tc 0 Tw (ANNs) Tj 29.88 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD -0.0091 Tc 3.1131 Tw (the results of each GA variation) Tj 0 Tc 0.08 Tw ( ) Tj 170.16 0 TD -0.0018 Tc 0 Tw (with) Tj 20.64 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0045 Tc 0.8845 Tw (crossover were compared with) Tj 0 Tc 0.08 Tw ( ) Tj 149.28 0 TD 0.0021 Tc 0.8279 Tw (those of the corresponding mutation) Tj 172.08 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0018 Tc -0.1582 Tw (only ) Tj 24.6 0 TD -0 Tc 0 Tw (variation) Tj 41.52 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0259 Tc -0.0659 Tw (using ) Tj -395.04 -13.44 TD 0.0023 Tc -0.0423 Tw (the ) Tj 17.16 0 TD 0.04 Tc 0 Tw (2) Tj 5.88 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0055 Tc 0.0855 Tw (tailed ) Tj 28.8 0 TD 0.0071 Tc -0.0471 Tw (student\222s ) Tj 45.12 0 TD /F3 11.68 Tf -0.007 Tc 0 Tw (t) Tj 3.24 0 TD /F0 11.68 Tf -0.0494 Tc (-) Tj 3.84 0 TD 0.0353 Tc -0.0753 Tw (test. ) Tj 22.2 0 TD 0.0042 Tc -0.0042 Tw (All classification results ) Tj 115.92 0 TD -0.0124 Tc 0.0204 Tw (are rounded to two decimal points.) Tj 162.12 0 TD 0 Tc -0.04 Tw ( ) Tj -408.12 -13.44 TD ( ) Tj 0 -13.44 TD -0.0034 Tc 1.4034 Tw (The breast cancer results shown in Table 1a were not significantly different from each) Tj 0 Tc 0.08 Tw ( ) Tj T* -0.0485 Tc 0 Tw (other) Tj 24 0 TD 0 Tc -0.04 Tw ( ) Tj 5.76 0 TD 0.0015 Tc 2.9225 Tw (with one exception where there was a statistically significant improvement in) Tj 0 Tc 0.08 Tw ( ) Tj -29.76 -13.32 TD 0.0118 Tc 1.5082 Tw (classification accuracy for a steady) Tj 169.32 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0132 Tc 1.5332 Tw (state GA set) Tj 60.36 0 TD -0.0306 Tc 1.5506 Tw (ting \(1) Tj 32.16 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0377 Tc 0.0423 Tw (p.; ) Tj 16.56 0 TD /F3 11.68 Tf -0.033 Tc 0 Tw (m) Tj 8.4 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.006 Tc 1.514 Tw (= 2.5%;) Tj 0 Tc -0.04 Tw ( ) Tj 43.08 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.28 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.0152 Tc 1.5048 Tw (= 60%;) Tj 0 Tc 0.08 Tw ( ) Tj 40.2 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.64 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (a) Tj 4.08 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.1075 Tc -0.0525 Tw (< ) Tj -414 -13.44 TD 0.0046 Tc 0.1954 Tw (0.0441\) in comparison to its mutation) Tj 177 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0068 Tc 0.2468 Tw (only variation. The percentage accuracies achieved ) Tj -180.84 -13.44 TD 0.0039 Tc 0.1043 Tw (for the breast cancer data with a population size of 500 are summarized in Table 1b; none ) Tj 0 -13.44 TD -0.0067 Tc 2.4667 Tw (of the settings produced results that ) Tj 2.487 Tc 0 Tw (w) Tj 191.64 0 TD -0.0111 Tc 2.4671 Tw (ere significantly different from using mutation) Tj 0 Tc 0.2 Tw ( ) Tj -191.64 -13.44 TD -0.0057 Tc 0.9441 Tw (alone. The diabetes classification results shown in Table 2 were not different from each) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0048 Tc 0.2391 Tw (other except for a microbial GA variation \(1) Tj 208.2 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0023 Tc -0.0377 Tw (p.; ) Tj 15.12 0 TD /F3 11.68 Tf -0.033 Tc 0 Tw (m) Tj 8.52 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.006 Tc 0.074 Tw (= 1.0%; ) Tj 40.44 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0152 Tc 0.1248 Tw (= 60%; ) Tj 37.56 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.88 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (a) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0141 Tc 0.2141 Tw (< 0.023\), which ) Tj -346.08 -13.44 TD -0.0034 Tc 0.0234 Tw (also showed a statistically si) Tj 132.48 0 TD -0.0183 Tc 0.0683 Tw (gnificant increase in classification accuracy.) Tj 206.52 0 TD 0 Tc -0.04 Tw ( ) Tj -321.6 -13.44 TD ( ) Tj 0 -13.44 TD ( ) Tj 0.48 -12 TD /F0 9.6944 Tf 0.0354 Tc 0 Tw (GA:) Tj 16.8 0 TD 0 Tc -0.0236 Tw ( ) Tj 25.44 0 TD 0.0487 Tc -0.0723 Tw (Uni. ) Tj 19.56 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.24 0 TD 0.0487 Tc -0.0723 Tw (Uni. ) Tj 19.56 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.84 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.32 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.32 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.32 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 19.44 0 TD 0.0605 Tc 0 Tw (None) Tj 21.24 0 TD 0 Tc -0.0236 Tw ( ) Tj ET 88.08 385.92 52.56 0.48 re f 140.64 385.92 0.48 0.48 re f 141.12 385.92 52.08 0.48 re f 193.2 385.92 0.48 0.48 re f 193.68 385.92 52.08 0.48 re f 245.76 385.92 0.48 0.48 re f 246.24 385.92 52.08 0.48 re f 298.32 385.92 0.48 0.48 re f 298.8 385.92 52.08 0.48 re f 350.88 385.92 0.48 0.48 re f 351.36 385.92 52.08 0.48 re f 403.44 385.92 0.48 0.48 re f 403.92 385.92 52.08 0.48 re f 456 385.92 0.48 0.48 re f 456.48 385.92 43.32 0.48 re f BT 93.36 363 TD 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (1.0%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 21.84 -0.36 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (94.16) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (93.69) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.11) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.89) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.68) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.70) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 23.88 0 TD 0.0209 Tc 0 Tw (93.38) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj ET 88.08 371.64 52.56 1.44 re f 140.64 371.64 1.44 1.44 re f 142.08 371.64 51.12 1.44 re f 193.2 371.64 1.44 1.44 re f 194.64 371.64 51.12 1.44 re f 245.76 371.64 1.44 1.44 re f 247.2 371.64 51.12 1.44 re f 298.32 371.64 1.44 1.44 re f 299.76 371.64 51.12 1.44 re f 350.88 371.64 1.44 1.44 re f 352.32 371.64 51.12 1.44 re f 403.44 371.64 1.44 1.44 re f 404.88 371.64 51.12 1.44 re f 456 371.64 1.44 1.44 re f 457.44 371.64 42.36 1.44 re f BT 93.36 351.84 TD /F0 9.6944 Tf 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (2.5%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 21.84 -0.36 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (95.20) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (95.45) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (95.27) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj ET q 310.56 349.68 24.36 10.8 re h W n BT 310.56 351.84 TD /F5 9.6944 Tf 0.0209 Tc 0 Tw (95.78) Tj ET Q q 334.92 355.08 3.72 5.4 re h W n BT 334.92 356.64 TD /F2 6.3072 Tf -0.0268 Tc 0 Tw (a) Tj ET Q q 338.52 349.44 5.4 11.04 re h W n BT 338.52 351.84 TD /F2 9.6944 Tf ( ) Tj ET Q BT 364.92 351.48 TD 0.0209 Tc 0 Tw (95.52) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (95.10) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 23.88 0 TD 0.0209 Tc 0 Tw (94.53) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj -396.72 -10.92 TD /F0 9.6944 Tf 0.0134 Tc 0 Tw (Micro) Tj 23.76 0 TD 0.0546 Tc (bial) Tj 14.64 0 TD -0.055 Tc (:) Tj 2.64 0 TD 0 Tc -0.0236 Tw ( ) Tj 20.28 -0.36 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (94.65) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.77) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.58) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.96) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0099 Tc 0 Tw (9) Tj 5.4 0 TD 0.0237 Tc (4.98) Tj 18.96 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.96) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 23.88 0 TD 0.0209 Tc 0 Tw (94.63) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj ET 87.36 337.56 53.28 0.48 re f 139.92 337.56 0.48 0.48 re f 140.4 337.56 52.8 0.48 re f 192.48 337.56 0.48 0.48 re f 192.96 337.56 52.8 0.48 re f 245.04 337.56 0.48 0.48 re f 245.52 337.56 52.8 0.48 re f 297.6 337.56 0.48 0.48 re f 298.08 337.56 52.8 0.48 re f 350.16 337.56 0.48 0.48 re f 350.64 337.56 52.8 0.48 re f 402.72 337.56 0.48 0.48 re f 403.2 337.56 52.8 0.48 re f 455.28 337.56 0.48 0.48 re f 455.76 337.56 44.04 0.48 re f BT 88.08 328.68 TD /F1 9.6944 Tf -0.0236 Tw ( ) Tj 0 -12.84 TD /F1 11.68 Tf 0.0471 Tc 0.2729 Tw (Table 1) Tj 37.56 0 TD 0.04 Tc 0 Tw (a) Tj 5.88 0 TD -0.04 Tc (.) Tj 2.88 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.0037 Tc 0.1363 Tw (Breast cancer ) Tj 66.96 0 TD /F3 11.68 Tf 0.0039 Tc 0.4361 Tw (testing data) Tj 55.32 0 TD /F0 11.68 Tf 0.0067 Tc 0.2833 Tw (; classification accuracy averaged over 15 runs \(pop. ) Tj -171.96 -13.44 TD -0.0044 Tc 0.4444 Tw (size = 50\).) Tj 50.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.1137 Tc 0 Tw (One) Tj 19.44 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0023 Tc 0.4377 Tw (set of runs) Tj 49.68 0 TD 0 Tc 0.4394 Tw (, highlighted in bold,) Tj 99.12 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.033 Tc 0 Tw (w) Tj 8.4 0 TD -0.0047 Tc (as) Tj 9.72 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.0045 Tc 0.1955 Tw (significantly better ) Tj 91.8 0 TD -0.0126 Tc 0.5726 Tw (on average) Tj 0 Tc -0.04 Tw ( ) Tj 54.84 0 TD -0.0494 Tc 0 Tw (\() Tj 3.96 0 TD /F3 11.68 Tf 0.04 Tc (p) Tj 5.76 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (a) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0125 Tc 0 Tw (<) Tj 6.6 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD 0.02 Tc 0 Tw (0.04) Tj 20.4 0 TD 0.04 Tc (41) Tj 11.76 0 TD -0.0494 Tc (\)) Tj 3.84 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0032 Tc 0.0168 Tw (than mutation alone) Tj 92.76 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0041 Tc -0.0441 Tw (The highest classification) Tj 119.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0069 Tc 0.0269 Tw (accuracy is highlighted in italics.) Tj 154.08 0 TD 0 Tc -0.04 Tw ( ) Tj -413.88 -11.52 TD /F0 9.6944 Tf -0.0236 Tw ( ) Tj 0 -11.28 TD ( ) Tj 17.4 -11.64 TD 0.0354 Tc 0 Tw (GA:) Tj 16.8 0 TD 0 Tc -0.0236 Tw ( ) Tj 25.44 0 TD 0.0607 Tc -0.0843 Tw (Uni. 10%) Tj 37.32 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.72 0 TD 0.0607 Tc -0.0843 Tw (Uni. 60%) Tj 37.32 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.84 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.32 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.32 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.32 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 19.44 0 TD 0.0605 Tc 0 Tw (None) Tj 21.24 0 TD 0 Tc -0.0236 Tw ( ) Tj ET 88.08 263.16 51.6 0.48 re f 139.68 263.16 0.48 0.48 re f 140.16 263.16 53.04 0.48 re f 193.2 263.16 0.48 0.48 re f 193.68 263.16 52.08 0.48 re f 245.76 263.16 0.48 0.48 re f 246.24 263.16 52.08 0.48 re f 298.32 263.16 0.48 0.48 re f 298.8 263.16 52.08 0.48 re f 350.88 263.16 0.48 0.48 re f 351.36 263.16 52.08 0.48 re f 403.44 263.16 0.48 0.48 re f 403.92 263.16 52.08 0.48 re f 456 263.16 0.48 0.48 re f 456.48 263.16 43.32 0.48 re f BT 93.36 240.24 TD 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (1.0%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 21.36 -0.36 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (95.59) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.68 0 TD 0.0209 Tc 0 Tw (95.74) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.79) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (95.03) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (95.08) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (95.31) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 23.88 0 TD 0.0209 Tc 0 Tw (95.22) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj ET 88.08 248.88 51.6 1.44 re f 139.68 248.88 1.44 1.44 re f 141.12 248.88 52.08 1.44 re f 193.2 248.88 1.44 1.44 re f 194.64 248.88 51.12 1.44 re f 245.76 248.88 1.44 1.44 re f 247.2 248.88 51.12 1.44 re f 298.32 248.88 1.44 1.44 re f 299.76 248.88 51.12 1.44 re f 350.88 248.88 1.44 1.44 re f 352.32 248.88 51.12 1.44 re f 403.44 248.88 1.44 1.44 re f 404.88 248.88 51.12 1.44 re f 456 248.88 1.44 1.44 re f 457.44 248.88 42.36 1.44 re f BT 93.36 229.08 TD /F0 9.6944 Tf 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (2.5%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 21.36 -0.36 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (95.74) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.68 0 TD /F6 9.6944 Tf 0.0209 Tc 0 Tw (96.80) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (95.92) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (96.14) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (96.09) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (95.88) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 23.88 0 TD 0.0209 Tc 0 Tw (96.21) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj -396.72 -10.92 TD /F0 9.6944 Tf 0.0134 Tc 0 Tw (Micro) Tj 23.76 0 TD 0.0546 Tc (bial) Tj 14.64 0 TD -0.055 Tc (:) Tj 2.64 0 TD 0 Tc -0.0236 Tw ( ) Tj 19.8 -0.36 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (94.44) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.68 0 TD 0.0209 Tc 0 Tw (94.70) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (95.01) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.94) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (94.70) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (95.22) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 23.88 0 TD 0.0209 Tc 0 Tw (94.63) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj ET 87.36 214.8 52.32 0.48 re f 138.96 214.8 0.48 0.48 re f 139.44 214.8 53.76 0.48 re f 192.48 214.8 0.48 0.48 re f 192.96 214.8 52.8 0.48 re f 245.04 214.8 0.48 0.48 re f 245.52 214.8 52.8 0.48 re f 297.6 214.8 0.48 0.48 re f 298.08 214.8 52.8 0.48 re f 350.16 214.8 0.48 0.48 re f 350.64 214.8 52.8 0.48 re f 402.72 214.8 0.48 0.48 re f 403.2 214.8 52.8 0.48 re f 455.28 214.8 0.48 0.48 re f 455.76 214.8 44.04 0.48 re f BT 88.08 204 TD /F1 11.68 Tf -0.04 Tw ( ) Tj 0 -13.2 TD -0.0165 Tc 0.3365 Tw (Table 1b.) Tj 46.92 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0063 Tc 0.1463 Tw (Breast cancer ) Tj 66.84 0 TD /F3 11.68 Tf 0.0148 Tc 0.3052 Tw (testing data) Tj 55.32 0 TD /F0 11.68 Tf -0.0037 Tc 0.2937 Tw (; classification accuracy averaged over 15 runs \(pop. ) Tj -172.44 -13.44 TD 0 Tc 0.3199 Tw (size = 500\).) Tj 55.56 0 TD -0.0023 Tc 0.3356 Tw (None of the settings were significantly different from each other.) Tj 306.48 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0186 Tc 0.2186 Tw (The highest ) Tj -365.4 -13.44 TD 0.0016 Tc -0.0176 Tw (classification accuracy is highlighted in italics.) Tj 218.64 0 TD 0 Tc -0.04 Tw ( ) Tj -218.64 -13.32 TD ( ) Tj 0 -13.44 TD ( ) Tj T* ( ) Tj T* ( ) Tj ET endstream endobj 78 0 obj 20834 endobj 76 0 obj << /Type /Page /Parent 64 0 R /Resources << /Font 83 0 R /ProcSet 2 0 R >> /Contents 77 0 R >> endobj 83 0 obj << /F0 6 0 R /F1 19 0 R /F2 22 0 R /F3 36 0 R /F4 58 0 R /F5 79 0 R /F6 81 0 R >> endobj 85 0 obj << /Length 86 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (12) Tj ET Q BT 105.48 726.48 TD 0.0354 Tc 0 Tw (GA:) Tj 16.8 0 TD 0 Tc -0.0236 Tw ( ) Tj 24.72 0 TD 0.0487 Tc 0.0477 Tw (Uni. ) Tj 19.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.72 0 TD 0.0487 Tc 0.0477 Tw (Uni. ) Tj 19.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.8 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.32 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.32 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 16.32 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 19.44 0 TD 0.0605 Tc 0 Tw (None) Tj 21.24 0 TD 0 Tc -0.0236 Tw ( ) Tj ET 88.08 735.12 51.72 0.48 re f 139.8 735.12 0.48 0.48 re f 140.28 735.12 50.88 0.48 re f 191.16 735.12 0.48 0.48 re f 191.64 735.12 54.12 0.48 re f 245.76 735.12 0.48 0.48 re f 246.24 735.12 52.08 0.48 re f 298.32 735.12 0.48 0.48 re f 298.8 735.12 52.08 0.48 re f 350.88 735.12 0.48 0.48 re f 351.36 735.12 52.08 0.48 re f 403.44 735.12 0.48 0.48 re f 403.92 735.12 52.08 0.48 re f 456 735.12 0.48 0.48 re f 456.48 735.12 43.32 0.48 re f BT 93.36 712.08 TD 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (1.0%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj ET q 153.36 709.68 24.48 10.8 re h W n BT 153.36 711.72 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (71.70) Tj ET Q q 177.84 709.68 5.4 10.8 re h W n BT 177.84 711.72 TD /F4 9.6944 Tf -0.055 Tw ( ) Tj ET Q q 206.28 709.68 24.48 10.8 re h W n BT 206.28 711.72 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (71.39) Tj ET Q q 230.64 709.68 5.4 10.8 re h W n BT 230.64 711.72 TD /F4 9.6944 Tf -0.055 Tw ( ) Tj ET Q q 259.8 709.68 24.48 10.8 re h W n BT 259.8 711.72 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (69.90) Tj ET Q q 284.16 709.68 5.4 10.8 re h W n BT 284.16 711.72 TD /F4 9.6944 Tf -0.055 Tw ( ) Tj ET Q q 312.36 709.68 24.48 10.8 re h W n BT 312.36 711.72 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (70.76) Tj ET Q q 336.72 709.68 5.4 10.8 re h W n BT 336.72 711.72 TD /F4 9.6944 Tf -0.055 Tw ( ) Tj ET Q q 364.92 709.68 24.48 10.8 re h W n BT 364.92 711.72 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (69.90) Tj ET Q q 389.28 709.68 5.4 10.8 re h W n BT 389.28 711.72 TD /F4 9.6944 Tf -0.055 Tw ( ) Tj ET Q q 417.48 709.68 24.48 10.8 re h W n BT 417.48 711.72 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (71.28) Tj ET Q q 441.84 709.68 5.4 10.8 re h W n BT 441.84 711.72 TD /F4 9.6944 Tf -0.055 Tw ( ) Tj ET Q q 465.72 709.68 24.48 10.8 re h W n BT 465.72 711.72 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (71.01) Tj ET Q q 490.08 709.68 5.4 10.8 re h W n BT 490.08 711.72 TD /F4 9.6944 Tf -0.055 Tw ( ) Tj ET Q 88.08 720.84 51.72 1.44 re f 139.8 720.84 1.44 1.44 re f 141.24 720.84 49.92 1.44 re f 191.16 720.84 1.44 1.44 re f 192.6 720.84 53.16 1.44 re f 245.76 720.84 1.44 1.44 re f 247.2 720.84 51.12 1.44 re f 298.32 720.84 1.44 1.44 re f 299.76 720.84 51.12 1.44 re f 350.88 720.84 1.44 1.44 re f 352.32 720.84 51.12 1.44 re f 403.44 720.84 1.44 1.44 re f 404.88 720.84 51.12 1.44 re f 456 720.84 1.44 1.44 re f 457.44 720.84 42.36 1.44 re f BT 93.36 701.04 TD 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (2.5%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 20.52 -0.36 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (73.54) Tj 24.48 0 TD 0 Tc -0.055 Tw ( ) Tj 28.44 0 TD 0.0209 Tc 0 Tw (73.09) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 29.16 0 TD 0.0209 Tc 0 Tw (72.47) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (72.01) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (72.88) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (71.81) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 23.88 0 TD 0.0209 Tc 0 Tw (73.06) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj -396.72 -10.92 TD /F0 9.6944 Tf 0.0134 Tc 0 Tw (Micro) Tj 23.76 0 TD 0.0546 Tc (bial) Tj 14.64 0 TD -0.055 Tc (:) Tj 2.64 0 TD 0 Tc -0.0236 Tw ( ) Tj 18.96 -0.24 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (72.47) Tj 24.48 0 TD 0 Tc -0.055 Tw ( ) Tj 28.44 0 TD 0.0209 Tc 0 Tw (73.82) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 29.16 0 TD 0.0209 Tc 0 Tw (73.37) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 26.4 0 TD /F5 9.6944 Tf 0.0209 Tc 0 Tw (75.49) Tj ET q 334.92 693 3.72 5.4 re h W n BT 334.92 694.44 TD /F5 6.3072 Tf -0.0268 Tc (a) Tj ET Q BT 338.52 689.52 TD 0 Tc -0.055 Tw ( ) Tj 26.4 0 TD /F4 9.6944 Tf 0.0209 Tc 0 Tw (73.30) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 28.2 0 TD 0.0209 Tc 0 Tw (74.69) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj 23.88 0 TD 0.0209 Tc 0 Tw (73.47) Tj 24.36 0 TD 0 Tc -0.055 Tw ( ) Tj ET 87.36 686.76 52.44 0.48 re f 139.08 686.76 0.48 0.48 re f 139.56 686.76 51.6 0.48 re f 190.56 686.76 0.48 0.48 re f 191.04 686.76 54.72 0.48 re f 245.04 686.76 0.48 0.48 re f 245.52 686.76 52.8 0.48 re f 297.6 686.76 0.48 0.48 re f 298.08 686.76 52.8 0.48 re f 350.16 686.76 0.48 0.48 re f 350.64 686.76 52.8 0.48 re f 402.72 686.76 0.48 0.48 re f 403.2 686.76 52.8 0.48 re f 455.28 686.76 0.48 0.48 re f 455.76 686.76 44.04 0.48 re f BT 88.08 676.08 TD /F1 11.68 Tf -0.04 Tw ( ) Tj 0 -13.2 TD 0 Tc -0.0405 Tw (Table ) Tj 31.68 0 TD 0.04 Tc 0 Tw (2) Tj 5.76 0 TD -0.04 Tc (.) Tj 3 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0085 Tc -0.0315 Tw (Diabetes ) Tj 43.92 0 TD /F3 11.68 Tf 0.0148 Tc 0.1852 Tw (testing data) Tj 55.08 0 TD /F0 11.68 Tf -0.0026 Tc 0.2026 Tw (; classifica) Tj 49.8 0 TD -0.0133 Tc 0.2 Tw (tion accuracy averaged over 15 runs \(pop. size = ) Tj -192.36 -13.44 TD -0.0324 Tc 0 Tw (50\).) Tj 18.48 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.0102 Tc 0.3098 Tw (One set of runs) Tj 72.12 0 TD 0.0133 Tc 0.3067 Tw (, highlighted in bold,) Tj 98.76 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.015 Tc 0.329 Tw (was significantly better on average \() Tj 171.48 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.88 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (a) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.029 Tc 0.291 Tw (< 0.023\)) Tj 40.08 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0109 Tc 0.0909 Tw (than mutation alone) Tj 92.64 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0 Tc -0.0058 Tw (The highest classification accuracy is highlighted in italics.) Tj 276.36 0 TD 0 Tc -0.04 Tw ( ) Tj -374.88 -11.64 TD /F0 9.6944 Tf -0.0236 Tw ( ) Tj 0 -13.08 TD /F0 11.68 Tf -0.0032 Tc 1.6432 Tw (Note that) Tj 44.76 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD 0.0231 Tc 1.4969 Tw (the results) Tj 0 Tc -0.04 Tw ( ) Tj 53.88 0 TD 0.0103 Tc 0 Tw (presente) Tj 39 0 TD -0.0043 Tc 1.6443 Tw (d here) Tj 0 Tc -0.04 Tw ( ) Tj 35.04 0 TD 0.0153 Tc 0 Tw (contra) Tj 29.16 0 TD 0.0047 Tc (st) Tj 7.8 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD 0.0023 Tc -0.0423 Tw (the ) Tj 18.96 0 TD -0.0427 Tc 0 Tw (claims) Tj 30.36 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD -0.0044 Tc 1.6444 Tw (of the permutation problem) Tj 132.96 0 TD 0.0478 Tc 1.7122 Tw (. It) Tj 0 Tc 0.08 Tw ( ) Tj -405.6 -13.44 TD -0.0075 Tc 0.6104 Tw (seems that in these experiments the use of crossover generally made no difference to the) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0124 Tc 2.7924 Tw (evolved generalization ability. In addition,) Tj 0 Tc -0.04 Tw ( ) Tj 214.8 0 TD -0.0042 Tc 2.7002 Tw (where there was a statistically significant) Tj 0 Tc 0.08 Tw ( ) Tj -214.8 -13.32 TD -0.0122 Tc 0.0922 Tw (difference in ) Tj 62.16 0 TD 0.0145 Tc 0 Tw (classi) Tj 26.04 0 TD 0.0097 Tc 0.0703 Tw (fication ) Tj 38.64 0 TD -0.0124 Tc -0.1476 Tw (accuracy ) Tj 44.28 0 TD -0.0144 Tc 0.0944 Tw (this was actually an ) Tj 94.68 0 TD -0.0009 Tc 0 Tw (improvement) Tj 62.28 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0084 Tc 0.2084 Tw (in generalization) Tj 78.24 0 TD -0.04 Tc 0 Tw (. ) Tj 5.88 0 TD 0 Tc -0.04 Tw ( ) Tj -397.68 -13.44 TD ( ) Tj -17.4 -13.44 TD -0.0267 Tc 0 Tw (4.2) Tj 14.64 0 TD /F4 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 2.88 0 TD /F0 11.68 Tf -0.0088 Tc 0.0888 Tw (Number of evaluations) Tj 107.04 0 TD 0 Tc -0.04 Tw ( ) Tj -124.56 -13.44 TD ( ) Tj 0 -13.44 TD -0.0023 Tc 2.2423 Tw (The number of evaluations of the fitness function provides a reliable measure of the) Tj 0 Tc 0.08 Tw ( ) Tj T* -0.0085 Tc 0.8521 Tw (computational cost incurred in finding a solution. It also allows an easier) Tj 0 Tc -0.04 Tw ( ) Tj 352.68 0 TD -0.0124 Tc 0.8124 Tw (comparison of) Tj 0 Tc -0.04 Tw ( ) Tj -352.68 -13.44 TD -0.0038 Tc 0.7638 Tw (efficiency with other algorithms.) Tj 0 Tc 0.08 Tw ( ) Tj 158.88 0 TD -0.033 Tc 0 Tw (A) Tj 8.4 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0086 Tc 0.6714 Tw (particular classification accurac) Tj 149.64 0 TD 0.04 Tc 0 Tw (y) Tj 5.64 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0069 Tc 0.7669 Tw (of the training data) Tj 0 Tc 0.08 Tw ( ) Tj -329.76 -13.44 TD -0.033 Tc 0 Tw (w) Tj 8.4 0 TD -0.0047 Tc (as) Tj 9.72 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.005 Tc 0.46 Tw (selected, and the mean number of evaluations required to) Tj 0 Tc -0.04 Tw ( ) Tj 273.84 0 TD -0.0178 Tc 0.4578 Tw (reach it was recorded) Tj 100.68 0 TD 0.0212 Tc 0.4188 Tw (. Th) Tj 19.32 0 TD -0.0259 Tc -0.0141 Tw (e ) Tj -415.32 -13.44 TD 0.0019 Tc 3.2221 Tw (training accuracy was chosen because it) Tj 0 Tc -0.04 Tw ( ) Tj 208.8 0 TD -0.0087 Tc 3.2687 Tw (allows a simple) Tj 79.08 0 TD 0 Tc -0.04 Tw ( ) Tj 6.24 0 TD -0.0177 Tc 0 Tw (assess) Tj 28.56 0 TD 0.04 Tc (ment) Tj 23.4 0 TD 0 Tc -0.04 Tw ( ) Tj 6.24 0 TD -0.0647 Tc 0 Tw (of) Tj 9.6 0 TD 0 Tc -0.04 Tw ( ) Tj 6.24 0 TD 0.0023 Tc -0.0423 Tw (the ) Tj 20.4 0 TD 0.0212 Tc 0 Tw (impact) Tj 31.92 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0131 Tc 0 Tw (crossover) Tj 44.64 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0102 Tc -0.0502 Tw (has ) Tj 18.72 0 TD 0.0196 Tc 0.1804 Tw (on search efficiency) Tj 94.32 0 TD -0.0104 Tc 0.2104 Tw (, and it avoids having to also evaluate the ANNs on the ) Tj -160.8 -13.44 TD -0.0087 Tc 0.5087 Tw (testing data at every generation) Tj 147.6 0 TD 0.08 Tc 0 Tw (. ) Tj 6.36 0 TD -0.033 Tc -0.007 Tw (A ) Tj 11.76 0 TD -0.0054 Tc 0.0854 Tw (classification ) Tj 64.92 0 TD -0.0068 Tc 0.4734 Tw (target is said to be reached as soon as at) Tj 0 Tc -0.04 Tw ( ) Tj -230.64 -13.44 TD -0.0038 Tc 1.7638 Tw (least one of the individuals of a population achieves) Tj 256.68 0 TD 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD -0.0025 Tc 1.7625 Tw (the required accuracy.) Tj 0 Tc -0.04 Tw ( ) Tj 111.72 0 TD -0.011 Tc 1.771 Tw (For better) Tj 0 Tc 0.08 Tw ( ) Tj -373.08 -13.44 TD -0.0019 Tc 0.8019 Tw (comparison ) Tj 0.833 Tc 0 Tw (t) Tj 61.44 0 TD -0.0026 Tc 0.8026 Tw (he targets were chosen so that most) Tj 0 Tc -0.04 Tw ( ) Tj 173.88 0 TD -0 Tc 0.8005 Tw (of the) Tj 0 Tc -0.04 Tw ( ) Tj 31.44 0 TD -0.0102 Tc -0.2698 Tw (evolutionary ) Tj 62.76 0 TD 0 Tc 0.7999 Tw (runs would be able) Tj 0 Tc 0.08 Tw ( ) Tj -329.52 -13.44 TD -0.0102 Tc 0.2702 Tw (to satisfy the criteria. ) Tj 102.72 0 TD -0.0141 Tc 0 Tw (F) Tj 6.24 0 TD 0.0197 Tc 0.1803 Tw (or the breast cancer data) Tj 114.72 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.037 Tc 0.193 Tw (it was chosen to be) Tj 90.12 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0141 Tc 0 Tw (94%;) Tj 24.6 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0494 Tc 0 Tw (f) Tj 3.96 0 TD -0.0183 Tc 0.2183 Tw (or the diabetes ) Tj -351.96 -13.44 TD 0.0035 Tc 1.9965 Tw (data runs) Tj 0 Tc -0.04 Tw ( ) Tj 49.56 0 TD -0.0113 Tc 2.1313 Tw (it was) Tj 29.64 0 TD 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD -0.0224 Tc -0.0176 Tw (78%. ) Tj 29.28 0 TD -0.0315 Tc 2.1515 Tw (The number of eval) Tj 97.92 0 TD 0.0138 Tc -0.0538 Tw (uations ) Tj 38.88 0 TD -0 Tc -0.04 Tw (that ) Tj 22.56 0 TD -0.013 Tc 2.133 Tw (the breast cancer and diabetes) Tj 0 Tc 0.08 Tw ( ) Tj -272.88 -13.32 TD -0.0083 Tc 0 Tw (experiments) Tj 57 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0105 Tc 0.5705 Tw (required to reach th) Tj 92.64 0 TD 0.0047 Tc -0.0447 Tw (is ) Tj 11.28 0 TD -0.0126 Tc -0.0274 Tw (target ) Tj 30 0 TD 0.001 Tc 0.479 Tw (are summarized in Tables) Tj 0 Tc -0.04 Tw ( ) Tj 125.16 0 TD 0.04 Tc 0 Tw (3) Tj 5.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.018 Tc 0.182 Tw (and ) Tj 20.4 0 TD 0.04 Tc 0 Tw (4) Tj 5.88 0 TD -0.0256 Tc 0.5856 Tw (, respectively.) Tj 65.52 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.001 Tc -0.039 Tw (All values ) Tj 50.52 0 TD -0.0259 Tc 0 Tw (a) Tj 5.16 0 TD -0.0027 Tc 0.0227 Tw (re rounded to nearest integer.) Tj 136.68 0 TD 0 Tc -0.04 Tw ( ) Tj -174.96 -13.44 TD ( ) Tj -0.12 -12.12 TD /F0 9.6944 Tf 0.0354 Tc 0 Tw (GA:) Tj 16.8 0 TD 0 Tc -0.0236 Tw ( ) Tj 24.24 0 TD 0.0487 Tc 0.0477 Tw (Uni. ) Tj 19.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 14.04 0 TD 0.0487 Tc -0.0723 Tw (Uni. ) Tj 19.56 0 TD 0.0367 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 17.16 0 TD -0.0472 Tc 0 Tw (1) Tj 4.8 0 TD 0.0118 Tc (-) Tj 3.24 0 TD 0.0532 Tc -0.0768 Tw (P. ) Tj 10.32 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 18 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.24 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.24 0 TD 0.0532 Tc 0.0432 Tw (P. ) Tj 10.32 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0532 Tc -0.0768 Tw (P. ) Tj 10.44 0 TD 0.0367 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 22.44 0 TD 0.0605 Tc 0 Tw (None) Tj 21.24 0 TD 0 Tc -0.0236 Tw ( ) Tj ET 88.08 339.24 51.36 0.48 re f 139.44 339.24 0.48 0.48 re f 139.92 339.24 50.76 0.48 re f 190.68 339.24 0.36 0.48 re f 191.04 339.24 50.88 0.48 re f 241.92 339.24 0.48 0.48 re f 242.4 339.24 56.04 0.48 re f 298.44 339.24 0.48 0.48 re f 298.92 339.24 51.36 0.48 re f 350.28 339.24 0.48 0.48 re f 350.76 339.24 50.64 0.48 re f 401.4 339.24 0.48 0.48 re f 401.88 339.24 50.88 0.48 re f 452.76 339.24 0.48 0.48 re f 453.24 339.24 50.52 0.48 re f BT 93.36 316.32 TD 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (1.0%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 21.36 -0.36 TD /F4 9.6944 Tf -0.0501 Tc 0 Tw (3047) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj ET q 203.64 313.92 21.72 11.04 re h W n BT 203.64 316.32 TD /F2 9.6944 Tf -0.0201 Tc 0 Tw (1705) Tj ET Q q 225.24 319.68 3.72 5.28 re h W n BT 225.24 321.24 TD /F2 6.3072 Tf -0.0268 Tc 0 Tw (a) Tj ET Q q 228.84 313.92 5.4 11.04 re h W n BT 228.84 316.32 TD /F2 9.6944 Tf ( ) Tj ET Q BT 259.32 315.96 TD -0.0501 Tc 0 Tw (4049) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj ET q 311.64 313.92 21.6 11.04 re h W n BT 311.64 316.32 TD /F2 9.6944 Tf -0.0501 Tc 0 Tw (1890) Tj ET Q q 333.12 319.68 4.08 5.28 re h W n BT 333.12 321.24 TD /F2 6.3072 Tf -0.0137 Tc 0 Tw (b) Tj ET Q q 337.08 313.92 5.4 11.04 re h W n BT 337.08 316.32 TD /F2 9.6944 Tf ( ) Tj ET Q BT 365.04 315.96 TD -0.0201 Tc 0 Tw (3553) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj ET q 414.48 313.92 21.72 11.04 re h W n BT 414.48 316.32 TD /F2 9.6944 Tf -0.0201 Tc 0 Tw (1611) Tj ET Q q 436.08 319.68 3.72 5.28 re h W n BT 436.08 321.24 TD /F2 6.3072 Tf -0.0268 Tc 0 Tw (c) Tj ET Q q 439.68 313.92 5.4 11.04 re h W n BT 439.68 316.32 TD /F2 9.6944 Tf ( ) Tj ET Q BT 467.4 315.96 TD 0.0099 Tc 0 Tw (4186) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj ET 88.08 325.08 51.36 1.32 re f 139.44 325.08 1.44 1.32 re f 140.88 325.08 49.8 1.32 re f 190.68 325.08 1.32 1.32 re f 192 325.08 49.92 1.32 re f 241.92 325.08 1.44 1.32 re f 243.36 325.08 55.08 1.32 re f 298.44 325.08 1.44 1.32 re f 299.88 325.08 50.4 1.32 re f 350.28 325.08 1.44 1.32 re f 351.72 325.08 49.68 1.32 re f 401.4 325.08 1.44 1.32 re f 402.84 325.08 49.92 1.32 re f 452.76 325.08 1.32 1.32 re f 454.08 325.08 49.68 1.32 re f BT 93.36 305.16 TD /F0 9.6944 Tf 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (2.5%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 21.36 -0.36 TD /F4 9.6944 Tf -0.0501 Tc 0 Tw (2177) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.64 0 TD 0.0099 Tc 0 Tw (2259) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 32.28 0 TD -0.0501 Tc 0 Tw (2504) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 32.64 0 TD -0.0201 Tc 0 Tw (2363) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.88 0 TD -0.0201 Tc 0 Tw (2380) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.64 0 TD -0.0501 Tc 0 Tw (2496) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.52 0 TD 0.0099 Tc 0 Tw (3202) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj -395.64 -10.8 TD /F0 9.6944 Tf 0.002 Tc 0 Tw (Micro:) Tj 26.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 34.32 -0.36 TD /F4 9.6944 Tf -0.0501 Tc 0 Tw (3534) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.64 0 TD /F6 9.6944 Tf 0.0099 Tc 0 Tw (1435) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 32.28 0 TD /F4 9.6944 Tf -0.0501 Tc 0 Tw (2644) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 32.64 0 TD -0.0201 Tc 0 Tw (5193) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.88 0 TD -0.0201 Tc 0 Tw (2187) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.64 0 TD -0.0501 Tc 0 Tw (2690) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.52 0 TD 0.0099 Tc 0 Tw (2655) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj ET 87.36 291 52.08 0.36 re f 138.72 291 0.48 0.36 re f 139.2 291 51.48 0.36 re f 189.96 291 0.48 0.36 re f 190.44 291 51.48 0.36 re f 241.2 291 0.48 0.36 re f 241.68 291 56.76 0.36 re f 297.72 291 0.48 0.36 re f 298.2 291 52.08 0.36 re f 349.56 291 0.48 0.36 re f 350.04 291 51.36 0.36 re f 400.8 291 0.48 0.36 re f 401.28 291 51.48 0.36 re f 452.04 291 0.48 0.36 re f 452.52 291 51.24 0.36 re f BT 88.08 280.2 TD /F1 11.68 Tf -0.04 Tw ( ) Tj 0 -13.2 TD 0 Tc -0.0405 Tw (Table ) Tj 31.68 0 TD 0.04 Tc 0 Tw (3) Tj 5.76 0 TD 0.06 Tc (a.) Tj 8.76 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0163 Tc 0.0963 Tw (Breast cancer ) Tj 66.48 0 TD /F3 11.68 Tf 0.0224 Tc 0.1776 Tw (training data) Tj 61.68 0 TD /F0 11.68 Tf -0.0117 Tc 0.2417 Tw (; evaluations taken for 94% accuracy averaged over ) Tj -177.6 -13.44 TD -0 Tc 0.0801 Tw (15 runs \(pop. size = 50\). ) Tj 117.48 0 TD -0.0224 Tc 0.1024 Tw (Three settings) Tj 65.88 0 TD 0.06 Tc 0.14 Tw (, h) Tj 11.76 0 TD 0.0078 Tc 0.0722 Tw (ighlighted in bold,) Tj 86.4 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0197 Tc -0.0803 Tw (were significantly ) Tj 86.88 0 TD -0.0235 Tc 0 Tw (faster) Tj 25.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0118 Tc 0.1882 Tw (than ) Tj -400.32 -13.44 TD 0 Tc 2.2395 Tw (mutation alone) Tj 0 Tc -0.04 Tw ( ) Tj 77.16 0 TD -0.0494 Tc 0 Tw (\() Tj 3.96 0 TD /F3 11.68 Tf 0.04 Tc (p) Tj 5.76 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (a) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.28 0 TD 0.0166 Tc 2.2234 Tw (< 0.0275,) Tj 0 Tc -0.04 Tw ( ) Tj 52.2 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.88 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (b) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.28 0 TD 0.0016 Tc 2.3584 Tw (< 0.0234,) Tj 0 Tc -0.04 Tw ( ) Tj 52.2 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.64 -1.56 TD /F3 7.8256 Tf 0.0054 Tc (c) Tj 3.6 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD 0.0092 Tc 2.3508 Tw (< 0.0166\).) Tj 50.76 0 TD 0 Tc -0.04 Tw ( ) Tj 5.28 0 TD -0.0059 Tc 2.3359 Tw (The most efficient result is) Tj 0 Tc -0.04 Tw ( ) Tj -286.08 -13.44 TD -0 Tc -0.0398 Tw (highlighted in italics.) Tj 98.88 0 TD 0 Tc -0.04 Tw ( ) Tj -98.88 -13.44 TD ( ) Tj 17.28 -12 TD /F0 9.6944 Tf 0.0354 Tc 0 Tw (GA:) Tj 16.8 0 TD 0 Tc -0.0236 Tw ( ) Tj 24.24 0 TD 0.0487 Tc 0.0477 Tw (Uni. ) Tj 19.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 14.04 0 TD 0.0487 Tc -0.0723 Tw (Uni. ) Tj 19.56 0 TD 0.0367 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 17.16 0 TD -0.0472 Tc 0 Tw (1) Tj 4.8 0 TD 0.0118 Tc (-) Tj 3.24 0 TD 0.0532 Tc -0.0768 Tw (P. ) Tj 10.32 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 18 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.24 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.24 0 TD 0.0532 Tc 0.0432 Tw (P. ) Tj 10.32 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0532 Tc -0.0768 Tw (P. ) Tj 10.44 0 TD 0.0367 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 22.44 0 TD 0.0605 Tc 0 Tw (None) Tj 21.24 0 TD 0 Tc -0.0236 Tw ( ) Tj ET 88.08 209.88 51.36 0.48 re f 139.44 209.88 0.48 0.48 re f 139.92 209.88 50.76 0.48 re f 190.68 209.88 0.36 0.48 re f 191.04 209.88 50.88 0.48 re f 241.92 209.88 0.48 0.48 re f 242.4 209.88 56.04 0.48 re f 298.44 209.88 0.48 0.48 re f 298.92 209.88 51.36 0.48 re f 350.28 209.88 0.48 0.48 re f 350.76 209.88 50.64 0.48 re f 401.4 209.88 0.48 0.48 re f 401.88 209.88 50.88 0.48 re f 452.76 209.88 0.48 0.48 re f 453.24 209.88 50.52 0.48 re f BT 93.36 186.84 TD 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (1.0%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 24 -0.36 TD /F4 9.6944 Tf 0.0099 Tc 0 Tw (987) Tj 16.32 0 TD 0 Tc -0.055 Tw ( ) Tj ET q 203.64 184.44 21.72 11.04 re h W n BT 203.64 186.84 TD /F2 9.6944 Tf -0.0201 Tc 0 Tw (1219) Tj ET Q q 225.24 190.2 3.72 5.28 re h W n BT 225.24 191.76 TD /F2 6.3072 Tf -0.0268 Tc 0 Tw (a) Tj ET Q q 228.84 184.44 5.4 11.04 re h W n BT 228.84 186.84 TD /F2 9.6944 Tf ( ) Tj ET Q BT 261.96 186.48 TD 0.0099 Tc 0 Tw (880) Tj 16.32 0 TD 0 Tc -0.055 Tw ( ) Tj ET q 311.64 184.44 21.6 11.04 re h W n BT 311.64 186.84 TD /F2 9.6944 Tf -0.0501 Tc 0 Tw (1315) Tj ET Q q 333.12 190.2 4.08 5.28 re h W n BT 333.12 191.76 TD /F2 6.3072 Tf -0.0137 Tc 0 Tw (b) Tj ET Q q 337.08 184.44 5.4 11.04 re h W n BT 337.08 186.84 TD /F2 9.6944 Tf ( ) Tj ET Q BT 365.04 186.48 TD 0.0099 Tc 0 Tw (1) Tj 5.4 0 TD -0.0301 Tc (001) Tj 16.2 0 TD 0 Tc -0.055 Tw ( ) Tj 29.64 0 TD -0.0501 Tc 0 Tw (1071) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 32.28 0 TD -0.0701 Tc 0 Tw (930) Tj 16.2 0 TD 0 Tc -0.055 Tw ( ) Tj ET 88.08 195.6 51.36 1.44 re f 139.44 195.6 1.44 1.44 re f 140.88 195.6 49.8 1.44 re f 190.68 195.6 1.32 1.44 re f 192 195.6 49.92 1.44 re f 241.92 195.6 1.44 1.44 re f 243.36 195.6 55.08 1.44 re f 298.44 195.6 1.44 1.44 re f 299.88 195.6 50.4 1.44 re f 350.28 195.6 1.44 1.44 re f 351.72 195.6 49.68 1.44 re f 401.4 195.6 1.44 1.44 re f 402.84 195.6 49.92 1.44 re f 452.76 195.6 1.32 1.44 re f 454.08 195.6 49.68 1.44 re f BT 93.36 175.68 TD /F0 9.6944 Tf 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (2.5%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 21.36 -0.36 TD /F4 9.6944 Tf -0.0501 Tc 0 Tw (1095) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.64 0 TD 0.0099 Tc 0 Tw (1286) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 34.92 0 TD 0.0099 Tc 0 Tw (992) Tj 16.32 0 TD 0 Tc -0.055 Tw ( ) Tj 35.28 0 TD -0.0201 Tc 0 Tw (1340) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 32.52 0 TD 0.0099 Tc 0 Tw (984) Tj 16.2 0 TD 0 Tc -0.055 Tw ( ) Tj 32.4 0 TD -0.0501 Tc 0 Tw (1283) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.52 0 TD 0.0099 Tc 0 Tw (1142) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj -395.64 -10.8 TD /F0 9.6944 Tf 0.002 Tc 0 Tw (Micro:) Tj 26.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 36.96 -0.36 TD /F4 9.6944 Tf 0.0099 Tc 0 Tw (73) Tj 10.8 0 TD (8) Tj 5.52 0 TD 0 Tc -0.055 Tw ( ) Tj ET q 206.4 162.12 16.2 11.04 re h W n BT 206.4 164.52 TD /F2 9.6944 Tf 0.0099 Tc 0 Tw (763) Tj ET Q q 222.48 167.88 3.72 5.28 re h W n BT 222.48 169.44 TD /F2 6.3072 Tf -0.0268 Tc 0 Tw (c) Tj ET Q q 226.2 162.12 5.4 11.04 re h W n BT 226.2 164.52 TD /F2 9.6944 Tf ( ) Tj ET Q BT 260.16 164.28 TD /F5 9.6944 Tf -0.0701 Tc 0 Tw (422) Tj ET q 276.24 167.76 4.2 5.4 re h W n BT 276.24 169.2 TD /F5 6.3072 Tf -0.0137 Tc (d) Tj ET Q BT 280.2 164.28 TD 0 Tc -0.055 Tw ( ) Tj 36 -0.12 TD /F4 9.6944 Tf 0.0099 Tc 0 Tw (811) Tj 16.2 0 TD 0 Tc -0.055 Tw ( ) Tj 35.28 0 TD 0.0099 Tc 0 Tw (47) Tj 10.8 0 TD (2) Tj 5.4 0 TD 0 Tc -0.055 Tw ( ) Tj 35.04 0 TD 0.0099 Tc 0 Tw (59) Tj 10.8 0 TD (1) Tj 5.52 0 TD 0 Tc -0.055 Tw ( ) Tj 34.92 0 TD -0.0701 Tc 0 Tw (589) Tj 16.2 0 TD 0 Tc -0.055 Tw ( ) Tj ET 87.36 161.52 52.08 0.48 re f 138.72 161.52 0.48 0.48 re f 139.2 161.52 51.48 0.48 re f 189.96 161.52 0.48 0.48 re f 190.44 161.52 51.48 0.48 re f 241.2 161.52 0.48 0.48 re f 241.68 161.52 56.76 0.48 re f 297.72 161.52 0.48 0.48 re f 298.2 161.52 52.08 0.48 re f 349.56 161.52 0.48 0.48 re f 350.04 161.52 51.36 0.48 re f 400.8 161.52 0.48 0.48 re f 401.28 161.52 51.48 0.48 re f 452.04 161.52 0.48 0.48 re f 452.52 161.52 51.24 0.48 re f BT 88.08 150.72 TD /F1 11.68 Tf -0.04 Tw ( ) Tj 0 -13.08 TD -0.0165 Tc 0.0965 Tw (Table 3b.) Tj 46.8 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0063 Tc 0.1463 Tw (Breast cancer ) Tj 66.48 0 TD /F3 11.68 Tf 0.0324 Tc 0.0476 Tw (training data) Tj 61.56 0 TD /F0 11.68 Tf -0 Tc 0.1106 Tw (; evaluations taken for 94% accuracy averaged over ) Tj -177.96 -13.44 TD -0.0039 Tc 0.4919 Tw (15 runs \(pop. size = 500\).) Tj 0 Tc -0.04 Tw ( ) Tj 125.64 0 TD -0.0559 Tc 0 Tw (Four) Tj 21.84 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.0368 Tc 0 Tw (settings) Tj 35.64 0 TD 0.0069 Tc 0.4331 Tw (, highlighted in bold,) Tj 99.24 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.0222 Tc 0.4178 Tw (were sig) Tj 39.6 0 TD -0.0009 Tc -0.1591 Tw (nificantly ) Tj 48.12 0 TD 0.0099 Tc 0.0701 Tw (different: ) Tj ET endstream endobj 86 0 obj 27328 endobj 84 0 obj << /Type /Page /Parent 64 0 R /Resources << /Font 87 0 R /ProcSet 2 0 R >> /Contents 85 0 R >> endobj 87 0 obj << /F0 6 0 R /F1 19 0 R /F2 22 0 R /F3 36 0 R /F4 58 0 R /F5 79 0 R /F6 81 0 R >> endobj 90 0 obj << /Length 91 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (13) Tj ET Q BT 88.08 725.04 TD /F0 11.68 Tf -0.0225 Tc 2.2625 Tw (three were ) Tj 2.2965 Tc 0 Tw (s) Tj 60.72 0 TD -0.0151 Tc (lower) Tj 26.52 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD -0.0494 Tc 0 Tw (\() Tj 3.84 0 TD /F3 11.68 Tf 0.04 Tc (p) Tj 5.88 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (a) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD 0.0016 Tc 2.2384 Tw (< 0.0251,) Tj 0 Tc -0.04 Tw ( ) Tj 51.96 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.76 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (b) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD 0.0246 Tc 2.2154 Tw (< 0.0072) Tj 43.92 0 TD -0.04 Tc 0 Tw (, ) Tj 8.04 0 TD /F3 11.68 Tf 0.04 Tc (p) Tj 5.64 -1.44 TD /F3 7.8256 Tf 0.0054 Tc (c) Tj 3.48 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD -0.0171 Tc 2.2571 Tw (< 0.0301\) and one was) Tj 0 Tc -0.04 Tw ( ) Tj 120 0 TD -0.0235 Tc 0 Tw (faster) Tj 25.8 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD -0.0494 Tc 0 Tw (\() Tj 3.84 0 TD /F3 11.68 Tf 0.04 Tc (p) Tj 5.88 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (d) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD -0.1075 Tc -0.0525 Tw (< ) Tj -414 -13.44 TD 0.0158 Tc 0 Tw (0.0236\)) Tj 36 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0032 Tc 0.0168 Tw (than mutation alone) Tj 92.76 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0032 Tc 0.0147 Tw (The most efficient result is highlighted in italics.) Tj 227.16 0 TD 0 Tc -0.04 Tw ( ) Tj -364.68 -13.32 TD ( ) Tj 17.28 -12.12 TD /F0 9.6944 Tf 0.0354 Tc 0 Tw (GA:) Tj 16.8 0 TD 0 Tc -0.0236 Tw ( ) Tj 24.48 0 TD 0.0487 Tc 0.0477 Tw (Uni. ) Tj 19.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 14.16 0 TD 0.0487 Tc -0.0723 Tw (Uni. ) Tj 19.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 14.88 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0532 Tc -0.0768 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.12 0 TD -0.0472 Tc 0 Tw (1) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.1132 Tc -0.0168 Tw (P. ) Tj 10.44 0 TD 0.0767 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.36 0 TD -0.0472 Tc 0 Tw (2) Tj 4.8 0 TD 0.0118 Tc (-) Tj 3.24 0 TD 0.0532 Tc 0.0432 Tw (P. ) Tj 10.32 0 TD 0.0767 Tc 0 Tw (10%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 15.36 0 TD -0.0472 Tc 0 Tw (2) Tj 4.92 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0532 Tc -0.0768 Tw (P. ) Tj 10.44 0 TD 0.0367 Tc 0 Tw (60%) Tj 17.76 0 TD 0 Tc -0.0236 Tw ( ) Tj 22.68 0 TD 0.0605 Tc 0 Tw (None) Tj 21.12 0 TD 0 Tc -0.0236 Tw ( ) Tj ET 88.08 694.8 51.36 0.48 re f 139.44 694.8 0.48 0.48 re f 139.92 694.8 51.12 0.48 re f 191.04 694.8 0.36 0.48 re f 191.4 694.8 51.12 0.48 re f 242.52 694.8 0.48 0.48 re f 243 694.8 51 0.48 re f 294 694.8 0.48 0.48 re f 294.48 694.8 50.88 0.48 re f 345.36 694.8 0.48 0.48 re f 345.84 694.8 51 0.48 re f 396.84 694.8 0.48 0.48 re f 397.32 694.8 51 0.48 re f 448.32 694.8 0.48 0.48 re f 448.8 694.8 51 0.48 re f BT 93.36 671.88 TD 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (1.0%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 21.6 -0.36 TD /F4 9.6944 Tf -0.0201 Tc 0 Tw (3091) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.76 0 TD -0.0501 Tc 0 Tw (4443) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 30 0 TD 0.0099 Tc 0 Tw (6027) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.76 0 TD -0.0201 Tc 0 Tw (3532) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 30 0 TD -0.0201 Tc 0 Tw (5631) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.76 0 TD -0.0501 Tc 0 Tw (4583) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.88 0 TD 0.0099 Tc 0 Tw (3289) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj ET 88.08 680.64 51.36 1.32 re f 139.44 680.64 1.44 1.32 re f 140.88 680.64 50.16 1.32 re f 191.04 680.64 1.32 1.32 re f 192.36 680.64 50.16 1.32 re f 242.52 680.64 1.32 1.32 re f 243.84 680.64 50.16 1.32 re f 294 680.64 1.44 1.32 re f 295.44 680.64 49.92 1.32 re f 345.36 680.64 1.44 1.32 re f 346.8 680.64 50.04 1.32 re f 396.84 680.64 1.44 1.32 re f 398.28 680.64 50.04 1.32 re f 448.32 680.64 1.32 1.32 re f 449.64 680.64 50.16 1.32 re f BT 93.36 660.72 TD /F0 9.6944 Tf 0.0099 Tc 0 Tw (S) Tj 5.4 0 TD 0.0118 Tc (-) Tj 3.12 0 TD 0.0099 Tc -0.0335 Tw (S ) Tj 7.8 0 TD 0.0516 Tc 0 Tw (2.5%) Tj 20.28 0 TD -0.055 Tc (:) Tj 2.88 0 TD 0 Tc -0.0236 Tw ( ) Tj 21.6 -0.36 TD /F4 9.6944 Tf -0.0201 Tc 0 Tw (2393) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.76 0 TD -0.0501 Tc 0 Tw (3028) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 30 0 TD 0.0099 Tc 0 Tw (2775) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.76 0 TD -0.0201 Tc 0 Tw (3546) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 30 0 TD -0.0201 Tc 0 Tw (4087) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.76 0 TD -0.0501 Tc 0 Tw (2686) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.88 0 TD 0.0099 Tc 0 Tw (3182) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj -391.44 -10.8 TD /F0 9.6944 Tf 0.002 Tc 0 Tw (Micro:) Tj 26.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 34.56 -0.36 TD /F4 9.6944 Tf -0.0201 Tc 0 Tw (4352) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.76 0 TD -0.0501 Tc 0 Tw (4267) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 30 0 TD /F6 9.6944 Tf 0.0099 Tc 0 Tw (2164) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.76 0 TD /F4 9.6944 Tf -0.0201 Tc 0 Tw (3279) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 30 0 TD -0.0201 Tc 0 Tw (4897) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.76 0 TD -0.0501 Tc 0 Tw (3238) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj 29.88 0 TD 0.0099 Tc 0 Tw (3497) Tj 21.6 0 TD 0 Tc -0.055 Tw ( ) Tj ET 87.36 646.44 52.08 0.48 re f 138.72 646.44 0.48 0.48 re f 139.2 646.44 51.84 0.48 re f 190.32 646.44 0.48 0.48 re f 190.8 646.44 51.72 0.48 re f 241.8 646.44 0.48 0.48 re f 242.28 646.44 51.72 0.48 re f 293.28 646.44 0.48 0.48 re f 293.76 646.44 51.6 0.48 re f 344.64 646.44 0.48 0.48 re f 345.12 646.44 51.72 0.48 re f 396.24 646.44 0.48 0.48 re f 396.72 646.44 51.6 0.48 re f 447.6 646.44 0.48 0.48 re f 448.08 646.44 51.72 0.48 re f BT 88.08 635.76 TD /F1 11.68 Tf -0.04 Tw ( ) Tj 0 -13.2 TD -0.0168 Tc 1.2968 Tw (Table 4.) Tj 41.52 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0085 Tc 0.0885 Tw (Diabetes ) Tj 45 0 TD /F3 11.68 Tf 0.0124 Tc 1.2676 Tw (training data) Tj 62.76 0 TD /F0 11.68 Tf 0.0066 Tc 1.2884 Tw (; evaluations taken for 78% accuracy averaged over 15) Tj 0 Tc 0.08 Tw ( ) Tj -153.6 -13.44 TD -0.0179 Tc 0.0739 Tw (runs \(pop. size = 50\). ) Tj 102.36 0 TD -0.0146 Tc 0.0946 Tw (The settings wer) Tj 77.28 0 TD 0.0027 Tc -0.016 Tw (e not significantly different from each other for any ) Tj -179.64 -13.44 TD -0.0052 Tc 0.0052 Tw (of the GA variations.) Tj 98.64 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0032 Tc 0.0147 Tw (The most efficient result is highlighted in italics.) Tj 227.04 0 TD 0 Tc -0.04 Tw ( ) Tj -328.56 -13.44 TD ( ) Tj 0 -13.44 TD -0.0014 Tc 0.6214 Tw (For the breast cancer data evaluations shown in Table) Tj 0 Tc -0.04 Tw ( ) Tj 259.44 0 TD 0.04 Tc 0 Tw (3) Tj 5.76 0 TD -0.0259 Tc -0.0141 Tw (a ) Tj 8.64 0 TD 0.0098 Tc 0.5802 Tw (there were 3 crossover settings) Tj 0 Tc 0.08 Tw ( ) Tj -273.84 -13.44 TD -0.0014 Tc 0.9214 Tw (that were significantly different fro) Tj 168 0 TD -0.008 Tc 0.968 Tw (m mutation alone. ) Tj 0.9035 Tc 0 Tw (T) Tj 97.44 0 TD 0.0515 Tc 0.8685 Tw (he steady) Tj 44.76 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0 Tc 1.1593 Tw (state GA) Tj 0 Tc -0.04 Tw ( ) Tj 46.2 0 TD -0.0068 Tc -0.0332 Tw (settings ) Tj 39.48 0 TD -0.0018 Tc 0.0818 Tw (with ) Tj -399.72 -13.44 TD /F3 11.68 Tf -0.033 Tc 0 Tw (m) Tj 8.4 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0326 Tc 0.1674 Tw (= 1.0%) Tj 34.2 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.062 Tc 0 Tw (and) Tj 16.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.019 Tc 0.301 Tw (using uniform \() Tj 73.08 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0088 Tc 0.1488 Tw (= 60%; ) Tj 37.56 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.88 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (a) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0014 Tc 0.2586 Tw (< 0.0275\), one) Tj 68.64 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0494 Tc 0.2706 Tw (point \() Tj 31.08 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0152 Tc 0.0648 Tw (= 60%; ) Tj 37.56 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.88 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (b) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0 Tc 0.0196 Tw (< 0.0234\) ) Tj -374.76 -13.44 TD -0.011 Tc 0.811 Tw (and two) Tj 38.04 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0212 Tc 0.7788 Tw (point ) Tj 0.7906 Tc 0 Tw (\() Tj 31.68 0 TD /F3 11.68 Tf -0.0259 Tc (c) Tj 5.16 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0392 Tc 0.7608 Tw (= 60%;) Tj 0 Tc -0.04 Tw ( ) Tj 38.88 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.88 -1.44 TD /F3 7.8256 Tf 0.0054 Tc (c) Tj 3.48 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0304 Tc 0.7696 Tw (< 0.0166\)) Tj 46.44 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0259 Tc 0 Tw (c) Tj 5.16 0 TD -0.0494 Tc (r) Tj 3.84 0 TD -0.0061 Tc (ossover) Tj 35.64 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0 Tc 0.8246 Tw (were all significantly more efficient in) Tj 0 Tc 0.2 Tw ( ) Tj -237 -13.44 TD -0.0046 Tc 1.0746 Tw (their search. Note that all) Tj 0 Tc -0.04 Tw ( ) Tj 125.88 0 TD 0.0029 Tc 1.0571 Tw (three settings had a high crossover probability) Tj 221.52 0 TD -0.0121 Tc 1.1121 Tw (. This indicates) Tj 0 Tc -0.16 Tw ( ) Tj -347.4 -13.44 TD -0.0027 Tc 1.2826 Tw (that at least in the) Tj 0 Tc -0.04 Tw ( ) Tj 91.8 0 TD -0.0138 Tc 1.3538 Tw (case of a) Tj 0 Tc -0.04 Tw ( ) Tj 47.64 0 TD 0.1063 Tc 0 Tw (steady) Tj 29.88 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0009 Tc 1.3091 Tw (state GA with low mutation the effect of crossover) Tj 0 Tc -0.04 Tw ( ) Tj -173.16 -13.44 TD 0.0029 Tc 0.0771 Tw (might be to ) Tj 56.4 0 TD 0.0118 Tc 0 Tw (help) Tj 20.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.006 Tc 0.206 Tw (evolutionary search.) Tj 94.68 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0056 Tc 0.1456 Tw (The corresponding runs with a higher probability of ) Tj -177.36 -13.32 TD -0.0018 Tc 1.5218 Tw (mutation ) Tj 1.5106 Tc 0 Tw (\() Tj 49.92 0 TD /F3 11.68 Tf -0.033 Tc (m) Tj 8.4 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.0014 Tc 1.5557 Tw (= 2.5%\) were not significantly more efficient tha) Tj 239.28 0 TD 0.04 Tc 0 Tw (n) Tj 5.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.0051 Tc 1.5749 Tw (using mutation alone,) Tj 0 Tc 0.08 Tw ( ) Tj -316.32 -13.44 TD -0.0089 Tc 0.2249 Tw (which gives some evidence that the improvements found in the low mutation cases is due ) Tj 0 -13.44 TD -0.0023 Tc 1.7823 Tw (to an additional randomization provided by crossover.) Tj 0 Tc -0.04 Tw ( ) Tj 267.96 0 TD -0.033 Tc 0 Tw (N) Tj 8.4 0 TD 0.0249 Tc 1.6951 Tw (o support for the) Tj 82.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD 0.0064 Tc 0.1936 Tw (permutation ) Tj -363.96 -13.44 TD -0.0332 Tc 0.1132 Tw (problem was) Tj 59.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0282 Tc 0 Tw (found.) Tj 30.24 0 TD 0 Tc -0.04 Tw ( ) Tj -93.12 -13.44 TD ( ) Tj 0 -13.44 TD -0 Tc 1.1601 Tw (Considering large populations,) Tj 0 Tc 0.08 Tw ( ) Tj 150.12 0 TD -0.0146 Tc 1.2196 Tw (the number of evaluations required for the breast cancer) Tj 0 Tc 0.08 Tw ( ) Tj -150.12 -13.44 TD 0.0044 Tc 0.8392 Tw (experiments with a population size of 500 is given in Table 3b.) Tj 0 Tc 0.08 Tw ( ) Tj 307.8 0 TD -0.0565 Tc 0 Tw (T) Tj 7.08 0 TD 0.0259 Tc 0.8341 Tw (here were two) Tj 0 Tc 0.2 Tw ( ) Tj 71.88 0 TD 0.0463 Tc 0 Tw (steady) Tj 29.76 0 TD -0.0494 Tc (-) Tj -416.52 -13.44 TD -0.0165 Tc 2.8565 Tw (state GA) Tj 0 Tc -0.04 Tw ( ) Tj 49.68 0 TD 0.0049 Tc 2.7151 Tw (settings with) Tj 0 Tc 0.08 Tw ( ) Tj 67.92 0 TD /F3 11.68 Tf -0.033 Tc 0 Tw (m) Tj 8.4 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.76 0 TD -0.0043 Tc 2.7843 Tw (= 1.0% that fared significantly worse compared) Tj 0 Tc -0.04 Tw ( ) Tj 244.56 0 TD 0.0061 Tc 2.8339 Tw (to using) Tj 0 Tc -0.04 Tw ( ) Tj -380.28 -13.44 TD -0 Tc 0.6801 Tw (mutation alone, namely \(uni.;) Tj 0 Tc -0.04 Tw ( ) Tj 143.52 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0152 Tc 0.6648 Tw (= 60%;) Tj 0 Tc -0.04 Tw ( ) Tj 38.64 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.76 -1.56 TD /F3 7.8256 Tf 0.0054 Tc (c) Tj 3.36 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0057 Tc 0.6857 Tw (< 0.0251\) and) Tj 66.48 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0647 Tc 0 Tw (\(1) Tj 9.6 0 TD -0.0494 Tc (-) Tj 3.96 0 TD -0.0023 Tc -0.0377 Tw (p.; ) Tj 15.6 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0088 Tc 0.6888 Tw (= 60%;) Tj 0 Tc -0.16 Tw ( ) Tj 38.4 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.88 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (d) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.0041 Tc 0.6841 Tw (< 0.0072\).) Tj 0 Tc -0.16 Tw ( ) Tj -371.4 -13.44 TD -0.0084 Tc 1.2284 Tw (The microbial GA) Tj 0 Tc -0.04 Tw ( ) Tj 92.04 0 TD 0.0059 Tc 0.0741 Tw (also ) Tj 23.04 0 TD 0.0039 Tc 1.2041 Tw (had two settings which were signific) Tj 176.76 0 TD 0.0067 Tc 1.1533 Tw (antly different from) Tj 0 Tc -0.04 Tw ( ) Tj 98.64 0 TD 0.0263 Tc -0.0663 Tw (purely ) Tj -390.48 -13.44 TD 0.0024 Tc 0.3176 Tw (mutation based ) Tj 74.88 0 TD -0.0097 Tc 0 Tw (evolution) Tj 44.16 0 TD 0 Tc 0.4741 Tw (. One crossover setting caused a reduction \(uni.;) Tj 228.24 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.0152 Tc 0.1848 Tw (= 60%; ) Tj 38.04 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.88 -1.44 TD /F3 7.8256 Tf 0.0054 Tc (e) Tj 3.48 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.1075 Tc -0.0525 Tw (< ) Tj -414 -13.44 TD 0.0158 Tc 0 Tw (0.0301\)) Tj 36 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0159 Tc 0.2081 Tw (and the other an improvement \(1) Tj 154.32 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0377 Tc 0.0423 Tw (p.; ) Tj 15.24 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0152 Tc 0.0648 Tw (= 10%; ) Tj 37.56 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (p) Tj 5.88 -1.44 TD /F3 7.8256 Tf -0.0155 Tc (f) Tj 2.28 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0011 Tc 0.2469 Tw (< 0.0236\) in search efficiency. ) Tj -276.48 -13.44 TD -0.0057 Tc 1.8857 Tw (All the crossover settings which were significantly less efficient had a high crossover) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.013 Tc 1.773 Tw (probability ) Tj 1.7506 Tc 0 Tw (\() Tj 59.76 0 TD /F3 11.68 Tf -0.0259 Tc (c) Tj 5.16 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD 0.0029 Tc 1.7914 Tw (= 60%\). However, the different settings do eve) Tj 231.48 0 TD 0.0036 Tc 1.7964 Tw (ntually converge on the) Tj 0 Tc -0.04 Tw ( ) Tj -305.04 -13.44 TD 0.009 Tc 0.791 Tw (same solutions as there is no significant difference between the classification accuracies) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.32 TD -0 Tc 3.7402 Tw (in Table 1b.) Tj 0 Tc 0.08 Tw ( ) Tj 70.2 0 TD 0.0087 Tc 3.6713 Tw (Nevertheless, ) Tj 3.6941 Tc 0 Tw (a) Tj 75.12 0 TD -0 Tc 3.7661 Tw (ll settings produced runs that were significantly more) Tj 0 Tc 0.08 Tw ( ) Tj -145.32 -13.44 TD 0.0039 Tc 0.5711 Tw (efficient on average compared to their small population co) Tj 278.04 0 TD 0.003 Tc 0.557 Tw (unterparts. This) Tj 0 Tc -0.04 Tw ( ) Tj 77.4 0 TD 0.0047 Tc -0.0447 Tw (is ) Tj 11.28 0 TD -0.004 Tc 0.624 Tw (likely to be) Tj 0 Tc 0.08 Tw ( ) Tj -366.72 -13.44 TD -0.0077 Tc 0.0277 Tw (the case ) Tj 40.32 0 TD 0.0333 Tc 0 Tw (because) Tj 36.96 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.0034 Tc 0.1434 Tw (the breast cancer classification problem was r) Tj 213.36 0 TD -0.0013 Tc 0.1533 Tw (elatively easy to solve, and ) Tj -293.76 -13.44 TD 0.0224 Tc 0 Tw (thus) Tj 19.56 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.022 Tc 0.042 Tw (not much fine) Tj 64.68 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0047 Tc 0.0086 Tw (tuning was required to hit on a viable solution. ) Tj 220.8 0 TD 0 Tc -0.04 Tw ( ) Tj -311.76 -13.44 TD ( ) Tj 0 -13.44 TD -0.0031 Tc 1.5231 Tw (For the diabetes evaluations shown in Table) Tj 0 Tc -0.04 Tw ( ) Tj 219.12 0 TD 0.04 Tc 0 Tw (4) Tj 5.88 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0.0316 Tc 1.4884 Tw (the steady) Tj 48.48 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0055 Tc (sta) Tj 12.96 0 TD -0.0025 Tc 1.5225 Tw (te GA settings with) Tj 0 Tc -0.04 Tw ( ) Tj 99.48 0 TD /F3 11.68 Tf -0.033 Tc 0 Tw (m) Tj 8.4 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 4.08 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.1075 Tc -0.0525 Tw (= ) Tj -414 -13.44 TD -0.0224 Tc -0.1376 Tw (1.0% ) Tj 28.56 0 TD -0.0027 Tc 0 Tw (produced) Tj 43.56 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0016 Tc 1.4016 Tw (2.3 runs on average) Tj 95.64 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD 0.0074 Tc 1.3926 Tw (which did not make the final target and) Tj 193.32 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0336 Tc -0.1264 Tw (were ) Tj 26.88 0 TD 0.0224 Tc -0.0624 Tw (thus ) Tj -400.92 -13.44 TD -0.0069 Tc -0.0031 Tw (removed when calculating the ) Tj 143.28 0 TD -0.0017 Tc -0.1583 Tw (efficiency ) Tj 49.56 0 TD 0.0039 Tc 0 Tw (statistics.) Tj 43.32 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0021 Tc -0.0421 Tw (None of the ) Tj 58.08 0 TD -0.0165 Tc 0 Tw (GAs) Tj 21.36 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0219 Tc 0.1019 Tw (had any settings ) Tj 78.24 0 TD -0.0018 Tc 0 Tw (with) Tj 20.76 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0131 Tc -0.0269 Tw (crossover ) Tj 48.96 0 TD -0.0041 Tc 1.4441 Tw (which took a significantly different number of) Tj 0 Tc 0.08 Tw ( ) Tj 228.84 0 TD -0.0148 Tc 0 Tw (evaluations) Tj 53.16 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0259 Tc 0 Tw (c) Tj 5.16 0 TD 0.0025 Tc 1.3975 Tw (ompared to their) Tj 0 Tc -0.04 Tw ( ) Tj -340.44 -13.44 TD -0.0018 Tc 0 Tw (mutation) Tj 41.52 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0091 Tc -0.0491 Tw (only variations) Tj 69.84 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj -118.08 -13.44 TD ( ) Tj 0 -13.44 TD -0.0031 Tc 0.6031 Tw (In general, no substantial) Tj 0 Tc -0.04 Tw ( ) Tj 122.64 0 TD -0.0045 Tc 0.5945 Tw (support for effects attributable to the permutation problem was) Tj 297.84 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0019 Tc 0 Tw (found) Tj 27.24 0 TD -0.04 Tc (,) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.018 Tc 0.062 Tw (and ) Tj 20.04 0 TD 0.0019 Tc -0.0419 Tw (using ) Tj 28.44 0 TD 0.0335 Tc 0 Tw (standard) Tj 39.72 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0131 Tc 0.0931 Tw (crossover ) Tj 47.88 0 TD -0.0024 Tc -0.0376 Tw (operators ) Tj 46.68 0 TD -0 Tc 0.2154 Tw (mostly had little effect on the efficiency of ) Tj ET endstream endobj 91 0 obj 20607 endobj 88 0 obj << /Type /Page /Parent 89 0 R /Resources << /Font << /F0 6 0 R /F1 19 0 R /F3 36 0 R /F4 58 0 R /F6 81 0 R >> /ProcSet 2 0 R >> /Contents 90 0 R >> endobj 93 0 obj << /Length 94 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (14) Tj ET Q BT 88.08 725.04 TD /F0 11.68 Tf 0.0163 Tc 1.9837 Tw (the evolutionary) Tj 78.12 0 TD 0 Tc -0.04 Tw ( ) Tj 4.92 0 TD 0.0034 Tc 1.9566 Tw (search. Nevertheless, it is worth noting that) Tj 0 Tc -0.04 Tw ( ) Tj 219.24 0 TD 0.0084 Tc 1.9916 Tw (Table 3a) Tj 42.36 0 TD 0 Tc -0.04 Tw ( ) Tj 5.04 0 TD 0.0459 Tc 0 Tw (show) Tj 24.72 0 TD 0.0165 Tc (s) Tj 4.56 0 TD 0 Tc -0.04 Tw ( ) Tj 4.8 0 TD 0.001 Tc 1.999 Tw (that the) Tj 36.72 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0071 Tc 3.0271 Tw (addition of crossover) Tj 0 Tc -0.04 Tw ( ) Tj 110.52 0 TD 0.0282 Tc 0.0518 Tw (with ) Tj 26.88 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.04 -1.44 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 4.08 1.44 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.76 0 TD 0.0508 Tc 2.9092 Tw (= 60%) Tj 33.96 0 TD 0 Tc -0.04 Tw ( ) Tj 6 0 TD -0.0134 Tc 3.0419 Tw (to a GA with a low mutation rate) Tj 0 Tc -0.04 Tw ( ) Tj 180.96 0 TD -0.0439 Tc 0.1239 Tw (can ) Tj 22.2 0 TD -0.1165 Tc 0 Tw (ma) Tj 14.28 0 TD -0.173 Tc (ke) Tj 10.8 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.32 TD -0.0025 Tc 0.2985 Tw (evolutionary search significantly more efficient. ) Tj 229.68 0 TD 0.0251 Tc 0.2949 Tw (However, t) Tj 52.2 0 TD 0.0032 Tc 0.3408 Tw (hat advantage in efficiency is ) Tj -281.88 -13.44 TD 0.0064 Tc 0.5536 Tw (lost when the) Tj 0 Tc -0.04 Tw ( ) Tj 66.96 0 TD -0.0047 Tc 0 Tw (sa) Tj 9.84 0 TD -0.1165 Tc 0.0765 Tw (me ) Tj 17.52 0 TD 0 Tc 0.5898 Tw (settings are used in combination with a large ) Tj 0.52 Tc 0 Tw (p) Tj 222.12 0 TD 0.0089 Tc 0.4311 Tw (opulation as shown in ) Tj -316.44 -13.44 TD -0.0059 Tc 0.0859 Tw (Table 3) Tj 35.4 0 TD 0.04 Tc 0 Tw (b) Tj 5.88 0 TD -0.04 Tc (. ) Tj 6 0 TD -0.0055 Tc 0.0855 Tw (In t) Tj 15.96 0 TD -0.0288 Tc 0 Tw (hese) Tj 20.64 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0013 Tc 0.0787 Tw (large population experiments) Tj 136.44 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0074 Tc 0.0874 Tw (the crossover operator ) Tj 106.92 0 TD -0.0077 Tc -0.1523 Tw (is apparently ) Tj 63.24 0 TD -0 Tc 0.0806 Tw (more ) Tj -396.48 -13.44 TD 0.02 Tc 0 Tw (disruptive) Tj 46.68 0 TD -0.007 Tc (;) Tj 3.36 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD -0.053 Tc 0 Tw (an) Tj 10.92 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0111 Tc 0 Tw (increas) Tj 33.12 0 TD -0.053 Tc (ed) Tj 11.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD 0.0085 Tc 0.1315 Tw (number of ) Tj 51.72 0 TD -0.0033 Tc 0.3233 Tw (fitness evaluations) Tj 87 0 TD 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0062 Tc 0.0738 Tw (are ) Tj 17.4 0 TD 0.0823 Tc 0 Tw (re) Tj 9 0 TD 0.0102 Tc 0.2498 Tw (quired for convergence on fit) Tj 137.52 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD 0.0165 Tc 0 Tw (sol) Tj 13.68 0 TD -0.0196 Tc (utions) Tj 28.56 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0071 Tc 0.0356 Tw (compared to the runs which used mutation alone) Tj 226.56 0 TD -0.04 Tc 0 Tw (. ) Tj 6 0 TD 0 Tc -0.04 Tw ( ) Tj -260.4 -13.44 TD ( ) Tj -17.4 -13.44 TD -0.0267 Tc 0 Tw (4.3) Tj 14.64 0 TD /F4 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 2.88 0 TD /F0 11.68 Tf 0.0019 Tc 0.0781 Tw (Population convergence) Tj 112.56 0 TD 0 Tc -0.04 Tw ( ) Tj -130.08 -13.44 TD ( ) Tj 0 -13.44 TD -0.009 Tc 1.4367 Tw (In the experiments conducted for this work the genetic diversity of the population was) Tj 0 Tc -0.16 Tw ( ) Tj T* 0 Tc 0.731 Tw (recorded after every generation. By plotting these records it is possible to show how th) Tj 415.2 0 TD 0.0941 Tc -0.0141 Tw (e ) Tj -415.2 -13.44 TD -0 Tc 1.208 Tw (population converges over generations. For these experiments the genetic diversity was) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0025 Tc 1.8739 Tw (taken to be equal to the mean of the Euclidean distances between all the individuals\222) Tj 0 Tc -0.04 Tw ( ) Tj T* -0.0032 Tc 2.385 Tw (genetic encoding \(considered as a real vector\). The measure used for calculating) Tj 0 Tc -0.04 Tw ( ) Tj 406.08 0 TD 0.0423 Tc 0.0377 Tw (the ) Tj -406.08 -13.44 TD -0.0089 Tc -0.1511 Tw (diversity ) Tj 44.64 0 TD /F3 11.68 Tf 0.04 Tc 0 Tw (d) Tj 5.88 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0195 Tc 0.9795 Tw (of a population \(Pop\) is shown in Eq. 1, where) Tj 0 Tc -0.04 Tw ( ) Tj 229.44 0 TD /F1 11.68 Tf -0.0141 Tc 0 Tw (p) Tj 6.48 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0165 Tc 0.9365 Tw (is a 3 element, real) Tj 91.32 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0102 Tc 0.1898 Tw (valued ) Tj -389.28 -13.44 TD -0 Tc 0 Tw (vector representing individual ) Tj 143.04 0 TD /F3 11.68 Tf -0.007 Tc 0 Tw (i) Tj 3.36 0 TD /F0 11.68 Tf -0.0156 Tc 0.0956 Tw (\222s genotype. ) Tj 60 0 TD 0 Tc -0.04 Tw ( ) Tj ET q 1 0 0 1 0 0 cm 0.36 w 1 J 1 j 0 0 0 RG 234.48 485.4 m 257.76 485.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 J 1 j 0 0 0 RG 331.08 493.68 m 331.08 477.24 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 J 1 j 0 0 0 RG 329.64 493.68 m 329.64 477.24 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 J 1 j 0 0 0 RG 297.36 494.52 m 297.36 476.28 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 J 1 j 0 0 0 RG 295.8 494.52 m 295.8 476.28 l S Q BT 261.72 479.88 TD /F7 17.3684 Tf -0.0237 Tc 0 Tw (\345) Tj 18 0 TD (\345) Tj -18.84 -7.8 TD /F7 6.9474 Tf -0.0335 Tc (\316) Tj 18.72 0 TD (\316) Tj 30.24 10.32 TD /F7 12.1579 Tf 0.0453 Tc (-) Tj -84.36 0 TD (=) Tj 39.6 -10.32 TD /F0 6.9474 Tf -0.0034 Tc (Pop) Tj 18.72 0 TD (Pop) Tj -30.48 6.36 TD /F0 6.0789 Tf -0.0395 Tc (2) Tj -18.12 -5.4 TD /F0 12.1579 Tf 0.0141 Tc (Pop) Tj 8.04 16.92 TD 0.0411 Tc (1) Tj 16.2 -17.88 TD /F3 6.9474 Tf -0.0114 Tc (i) Tj 18.6 0 TD (j) Tj 47.88 7.2 TD /F3 6.0789 Tf -0.0099 Tc (j) Tj -21.12 0 TD (i) Tj -88.8 3.12 TD /F3 12.1579 Tf 0.0411 Tc (d) Tj 102 0 TD /F1 12.1579 Tf -0.0398 Tc (p) Tj -19.92 0 TD (p) Tj 34.8 1.68 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 21.84 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD 0.0204 Tc 0 Tw (\(1\)) Tj 13.68 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -31.8 TD -0.0082 Tc 0.0882 Tw (To ) Tj 17.04 0 TD 0.004 Tc 0 Tw (illustrate) Tj 40.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD -0.0015 Tc 1.1975 Tw (how quickly a population generally converged in these experiments it wi) Tj 351.96 0 TD -0.007 Tc -0.033 Tw (ll ) Tj -414 -13.44 TD -0.0077 Tc 0.0277 Tw (suffice to present a few examples here as shown in Fig. 3 and 4. ) Tj 301.68 0 TD 0 Tc -0.04 Tw ( ) Tj 1 1 1 rg ET 92.28 335.88 210.72 97.2 re f* 108 423.48 m 293.28 423.48 l 293.28 355.2 l 108 355.2 l 108 423.48 l h f* q 1 0 0 1 0 0 cm 0.36 w 1 J 1 j 1 1 1 RG 108 423.48 m 293.28 423.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 J 1 j 1 1 1 RG 293.28 423.48 m 293.28 355.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 J 1 j 1 1 1 RG 293.28 355.2 m 108 355.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 J 1 j 1 1 1 RG 108 355.2 m 108 423.48 l S Q 0.12 w 1 J 1 j 0 0 0 RG 108 423.48 m 108 355.2 l S 106.08 355.2 m 108 355.2 l S 106.08 372.12 m 108 372.12 l S 106.08 389.16 m 108 389.16 l S 106.08 406.56 m 108 406.56 l S 106.08 423.48 m 108 423.48 l S 108 355.2 m 293.28 355.2 l S 108 353.28 m 108 355.2 l S 154.32 353.28 m 154.32 355.2 l S 200.64 353.28 m 200.64 355.2 l S 246.96 353.28 m 246.96 355.2 l S 293.28 353.28 m 293.28 355.2 l S 0 0 0 rg 108 402.6 m 109.92 402.24 l 109.92 401.52 l 108 401.88 l h f* 110.4 402.24 m 112.32 401.16 l 111.96 400.32 l 109.92 401.52 l h f* 111.96 400.32 1.44 0.84 re f* 116.88 399.96 m 117.72 399.6 l 117.36 398.76 l 116.52 399.24 l h f* 117.36 398.76 1.92 0.84 re f* 119.64 399.6 m 121.56 397.68 l 121.2 397.2 l 119.28 399.24 l h f* 124.2 396.12 0.48 0.72 re f* 125.04 396.48 m 126.24 391.44 l 125.4 391.44 l 124.2 396.48 l h f* 126.96 388.44 m 126.96 387.6 l 126.24 387.6 l 126.24 388.44 l h f* 126.96 387.6 m 127.68 383.04 l 126.96 383.04 l 126.24 387.6 l h f* 128.52 379.92 m 128.88 378 l 128.16 378 l 127.68 379.92 l h f* 128.88 378 m 129.72 374.52 l 128.88 374.52 l 128.16 378 l h f* 130.08 371.4 m 130.8 367.2 l 130.08 367.2 l 129.24 371.4 l h f* 130.08 367.56 m 130.8 368.76 l 131.64 368.28 l 130.8 367.2 l h f* 133.08 369.84 0.84 0.84 re f* 133.56 370.68 m 135.48 371.76 l 135.84 371.04 l 133.92 369.84 l h f* 136.2 371.76 m 138.12 369.84 l 137.76 369.48 l 135.84 371.4 l h f* 139.32 367.2 m 140.04 365.64 l 139.32 365.28 l 138.48 366.72 l h f* 140.04 365.64 m 141.6 362.88 l 140.88 362.52 l 139.32 365.28 l h f* 141.6 362.88 m 142.44 362.52 l 141.96 361.8 l 141.24 362.16 l h f* 145.44 361.32 m 147.36 360.24 l 147 359.4 l 145.08 360.6 l h f* 147 359.4 1.92 0.84 re f* 148.56 360.24 m 149.76 360.96 l 150.12 360.24 l 148.92 359.4 l h f* 152.76 362.52 m 153.96 362.88 l 154.32 362.16 l 153.24 361.8 l h f* 154.32 362.88 m 156.24 362.52 l 156.24 361.8 l 154.32 362.16 l h f* 156.24 362.52 m 158.16 362.88 l 158.16 362.16 l 156.24 361.8 l h f* 157.8 362.88 m 158.16 363.36 l 158.64 362.88 l 158.16 362.52 l h f* 161.64 364.44 m 163.68 364.8 l 163.68 364.08 l 161.64 363.72 l h f* 163.68 364.08 1.92 0.72 re f* 165.12 364.8 m 166.68 365.64 l 167.04 364.8 l 165.6 364.08 l h f* 169.8 366.72 m 170.52 367.2 l 171 366.36 l 170.16 366 l h f* 170.52 367.2 m 172.44 367.92 l 172.92 367.2 l 171 366.36 l h f* 172.92 367.2 1.92 0.72 re f* 174.48 367.92 m 175.2 368.28 l 175.56 367.56 l 174.84 367.2 l h f* 178.68 368.28 m 180.24 368.76 l 180.24 367.92 l 178.68 367.56 l h f* 180.24 368.76 m 182.16 369.12 l 182.16 368.28 l 180.24 367.92 l h f* 182.16 368.28 1.92 0.84 re f* 187.2 367.56 0.36 0.72 re f* 187.92 368.28 m 189.84 367.56 l 189.48 366.72 l 187.56 367.56 l h f* 189.12 367.56 m 191.04 368.28 l 191.4 367.56 l 189.48 366.72 l h f* 191.4 367.56 1.2 0.72 re f* 195.24 369.12 m 196.44 369.84 l 196.8 369.12 l 195.6 368.28 l h f* 196.8 369.12 1.92 0.72 re f* 198.72 369.12 1.92 0.72 re f* 204.12 369.84 m 204.96 369.48 l 204.48 368.76 l 203.76 369.12 l h f* 204.48 369.48 m 206.04 369.12 l 206.04 368.28 l 204.48 368.76 l h f* 206.04 369.12 m 207.96 368.76 l 207.96 367.92 l 206.04 368.28 l h f* 207.6 368.76 m 208.8 369.12 l 209.16 368.28 l 207.96 367.92 l h f* 212.64 369.84 m 214.2 369.12 l 213.84 368.28 l 212.28 369.12 l h f* 214.2 369.12 m 215.76 367.92 l 215.28 367.2 l 213.84 368.28 l h f* 215.28 367.2 2.04 0.72 re f* 220.32 366.36 0.84 0.84 re f* 220.68 367.2 m 222.72 367.92 l 223.08 367.2 l 221.16 366.36 l h f* 223.08 367.92 m 224.64 367.56 l 224.64 366.72 l 223.08 367.2 l h f* 224.16 367.56 m 225.36 367.92 l 225.72 367.2 l 224.64 366.72 l h f* 228.84 367.92 m 230.4 367.56 l 230.4 366.72 l 228.84 367.2 l h f* 230.4 366.72 1.92 0.84 re f* 232.32 367.56 m 233.88 367.2 l 233.88 366.36 l 232.32 366.72 l h f* 233.88 366.36 0.36 0.84 re f* 237.36 366 0.36 0.72 re f* 237.72 366.72 m 239.64 366.36 l 239.64 365.64 l 237.72 366 l h f* 240 366.36 m 241.92 365.28 l 241.56 364.44 l 239.64 365.64 l h f* 241.92 365.28 m 243.12 364.44 l 242.76 363.72 l 241.56 364.44 l h f* 245.4 366 m 246.6 366.72 l 246.96 366 l 245.88 365.28 l h f* 246.6 366.72 m 248.52 367.56 l 248.88 366.72 l 246.96 366 l h f* 248.88 367.56 m 250.8 367.92 l 250.8 367.2 l 248.88 366.72 l h f* 251.28 367.92 m 251.64 367.56 l 251.28 367.2 l 250.8 367.56 l h f* 254.28 366.72 m 256.2 367.2 l 256.2 366.36 l 254.28 366 l h f* 256.2 367.2 m 258.12 366.72 l 258.12 366 l 256.2 366.36 l h f* 258.12 366 1.56 0.72 re f* 262.44 364.8 1.08 0.84 re f* 263.52 365.64 m 265.56 366 l 265.56 365.28 l 263.52 364.8 l h f* 265.56 365.28 1.92 0.72 re f* 267.48 365.28 0.36 0.72 re f* 270.96 366 m 272.88 366.36 l 272.88 365.64 l 270.96 365.28 l h f* 272.88 365.64 1.92 0.72 re f* 274.8 366.36 m 276.36 366 l 276.36 365.28 l 274.8 365.64 l h f* 279.36 364.8 0.84 0.84 re f* 280.2 365.64 m 282.12 365.28 l 282.12 364.44 l 280.2 364.8 l h f* 281.76 365.28 m 283.68 366 l 284.04 365.28 l 282.12 364.44 l h f* 283.68 366 m 284.4 366.36 l 284.76 365.64 l 284.04 365.28 l h f* 287.88 367.2 m 289.44 367.56 l 289.44 366.72 l 287.88 366.36 l h f* 289.44 366.72 1.92 0.84 re f* 108.48 403.8 m 109.92 403.08 l 109.56 402.24 l 108 403.08 l h f* 113.04 401.52 m 113.88 400.68 l 113.4 400.32 l 112.68 401.16 l h f* 113.88 400.32 m 113.88 399.96 l 113.04 399.96 l 113.04 400.32 l h f* 114.6 396.84 m 114.6 395.28 l 113.88 395.28 l 113.88 396.84 l h f* 115.44 392.28 m 115.44 390.72 l 114.6 390.72 l 114.6 392.28 l h f* 115.8 387.6 m 116.16 386.04 l 115.44 386.04 l 114.96 387.6 l h f* 116.16 383.04 m 116.16 381.48 l 115.44 381.48 l 115.44 383.04 l h f* 116.52 378.36 m 116.52 376.8 l 115.8 376.8 l 115.8 378.36 l h f* 116.88 373.68 m 116.88 372.12 l 116.16 372.12 l 116.16 373.68 l h f* 117.36 369.12 m 117.36 367.56 l 116.52 367.56 l 116.52 369.12 l h f* 117.72 364.44 m 117.72 362.88 l 116.88 362.88 l 116.88 364.44 l h f* 119.28 360.24 1.56 0.72 re f* 123.12 362.52 m 124.2 362.88 l 124.68 362.16 l 123.48 361.8 l h f* 124.68 362.16 0.36 0.72 re f* 127.68 363.72 m 128.16 364.08 l 128.52 363.72 l 128.16 363.36 l h f* 128.52 363.36 1.2 0.72 re f* 132 362.16 m 133.56 362.52 l 133.56 361.8 l 132 361.32 l h f* 136.56 362.52 1.2 0.84 re f* 137.76 362.52 0.36 0.84 re f* 141.24 364.08 m 142.8 364.44 l 142.8 363.72 l 141.24 363.36 l h f* 145.92 363.36 1.08 0.72 re f* 147.36 364.08 m 147.84 363.72 l 147.36 363.36 l 147 363.72 l h f* 150.48 362.16 m 150.84 361.8 l 150.48 361.32 l 150.12 361.8 l h f* 150.12 361.8 m 151.32 362.16 l 151.68 361.32 l 150.48 360.96 l h f* 154.8 362.52 m 156.24 362.88 l 156.24 362.16 l 154.8 361.8 l h f* 159.36 362.16 0.36 0.72 re f* 159.36 362.88 m 160.56 363.36 l 160.92 362.52 l 159.72 362.16 l h f* 164.04 363.72 m 165.6 364.08 l 165.6 363.36 l 164.04 362.88 l h f* 168.6 363.36 0.48 0.72 re f* 168.6 364.08 m 169.8 364.44 l 170.16 363.72 l 169.08 363.36 l h f* 173.28 364.44 m 174.84 364.08 l 174.84 363.36 l 173.28 363.72 l h f* 177.96 363.36 m 178.68 362.88 l 178.32 362.16 l 177.48 362.52 l h f* 178.68 362.88 m 179.4 362.52 l 179.04 361.8 l 178.32 362.16 l h f* 182.16 360.24 m 182.52 359.4 l 181.8 359.04 l 181.32 359.88 l h f* 182.16 358.68 0.72 0.72 re f* 186 359.4 m 187.56 359.88 l 187.56 359.04 l 186 358.68 l h f* 190.68 359.4 0.72 0.84 re f* 191.4 359.4 0.84 0.84 re f* 195.24 359.04 1.56 0.84 re f* 199.92 359.4 0.72 0.84 re f* 200.28 360.24 m 201 360.6 l 201.48 359.88 l 200.64 359.4 l h f* 204.96 362.16 m 206.04 361.32 l 205.68 360.6 l 204.48 361.32 l h f* 209.16 360.6 m 210.36 360.24 l 209.88 359.4 l 208.8 359.88 l h f* 209.88 359.4 0.48 0.84 re f* 213.36 359.88 0.48 0.72 re f* 213.84 359.88 1.08 0.72 re f* 217.68 360.6 m 218.76 360.96 l 219.24 360.24 l 218.04 359.88 l h f* 219.24 360.24 0.36 0.72 re f* 222.72 360.6 0.36 0.72 re f* 222.72 361.32 m 223.8 361.8 l 224.16 360.96 l 223.08 360.6 l h f* 227.64 361.8 m 228.84 361.32 l 228.48 360.6 l 227.28 360.96 l h f* 228.48 360.6 0.36 0.72 re f* 231.96 361.32 0.36 0.84 re f* 231.96 362.16 m 233.04 362.88 l 233.52 362.16 l 232.32 361.32 l h f* 236.16 363.72 m 237.36 364.08 l 237.72 363.36 l 236.52 362.88 l h f* 238.08 364.08 m 238.44 363.72 l 238.08 363.36 l 237.72 363.72 l h f* 241.2 362.52 0.36 0.84 re f* 241.92 363.36 m 243.12 362.88 l 242.76 362.16 l 241.56 362.52 l h f* 245.4 363.72 m 246.6 364.08 l 246.96 363.36 l 245.88 362.88 l h f* 246.96 363.36 0.36 0.72 re f* 250.44 362.88 0.36 0.84 re f* 251.28 363.72 m 252.36 363.36 l 252 362.52 l 250.8 362.88 l h f* 255.12 362.52 1.08 0.84 re f* 256.2 362.52 0.48 0.84 re f* 259.68 362.52 0.48 0.84 re f* 259.68 363.36 m 260.88 363.72 l 261.24 362.88 l 260.16 362.52 l h f* 264 363.72 m 265.08 364.08 l 265.56 363.36 l 264.36 362.88 l h f* 265.56 363.36 0.36 0.72 re f* 269.04 363.36 0.36 0.72 re f* 269.04 364.08 m 270.12 364.44 l 270.48 363.72 l 269.4 363.36 l h f* 273.24 363.72 m 274.44 364.08 l 274.8 363.36 l 273.6 362.88 l h f* 274.8 363.36 0.36 0.72 re f* 278.28 364.08 0.36 0.72 re f* 278.28 364.8 m 279.36 365.28 l 279.84 364.44 l 278.64 364.08 l h f* 282.84 364.44 1.2 0.84 re f* 284.04 364.44 0.36 0.84 re f* 287.52 364.44 0.36 0.84 re f* 288.24 365.28 m 289.44 364.8 l 289.08 364.08 l 287.88 364.44 l h f* q 1 0 0 1 0 0 cm 108 399.48 2.4 2.76 re h W n 0.36 w 108 401.88 m 109.92 399.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 109.92 399.96 m 111.12 399.24 l 111.48 398.4 l 111.96 397.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 111.96 397.68 m 112.32 396.48 l 112.68 394.92 l 113.4 391.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 113.4 391.08 m 113.88 389.16 l 114.24 386.4 l 115.44 381.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 115.44 381.84 m 115.8 379.08 l 116.16 376.08 l 116.52 374.52 l 116.88 373.32 l 116.88 372.6 l 117.36 372.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 117.36 372.12 m 117.72 372.12 l 117.72 372.6 l 118.08 373.32 l 118.08 374.52 l 118.8 376.8 l 118.8 377.52 l 119.28 378 l S Q q 1 0 0 1 0 0 cm 0.36 w 119.28 378 m 119.64 378.36 l 120.36 378.36 l 120.84 378 l 121.2 377.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 121.2 377.16 m 121.56 376.08 l 122.28 372.96 l 122.28 372.6 l 122.76 372.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 122.76 372.12 m 123.12 372.12 l 123.12 372.6 l 123.48 374.16 l 124.2 375.24 l 124.2 375.6 l 124.68 375.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 124.68 375.6 m 125.04 375.24 l 125.04 374.16 l 125.4 371.76 l 126.24 369.48 l 126.24 368.76 l 126.6 367.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 126.6 367.92 m 126.96 367.56 l 127.32 367.92 l 128.16 368.76 l 128.52 369.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 128.52 369.48 m 128.88 371.04 l 129.72 372.96 l 130.08 374.88 l 130.08 376.08 l 130.44 376.44 l S Q q 1 0 0 1 0 0 cm 0.36 w 130.44 376.44 m 130.8 376.8 l 131.16 376.8 l 132 376.44 l S Q q 1 0 0 1 0 0 cm 0.36 w 132 376.44 m 132.72 376.44 l 133.56 376.8 l 133.92 377.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 133.92 377.16 m 134.28 378 l 134.64 379.56 l 135.48 380.64 l 135.84 381 l S Q q 1 0 0 1 0 0 cm 0.36 w 135.84 381 m 136.2 380.64 l 136.56 379.92 l 137.76 378 l S Q q 1 0 0 1 0 0 cm 0.36 w 137.76 378 m 138.12 376.8 l 138.96 375.6 l 139.32 374.16 l 139.68 373.32 l S Q q 1 0 0 1 0 0 cm 0.36 w 139.68 373.32 m 140.52 372.6 l 141.24 372.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 141.24 372.6 m 141.6 372.96 l 141.96 374.16 l 142.8 374.88 l 143.16 375.24 l S Q q 1 0 0 1 0 0 cm 0.36 w 143.16 375.24 m 143.52 374.88 l 143.88 374.52 l 144.72 373.68 l 145.08 373.32 l S Q q 1 0 0 1 0 0 cm 0.36 w 145.08 373.32 m 145.44 373.32 l 145.92 373.68 l 147 374.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 147 374.52 m 147.36 375.24 l 148.2 376.44 l 148.56 376.8 l 148.56 377.16 l 148.92 376.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 148.92 376.8 m 149.4 376.08 l 149.4 375.24 l 149.76 372.6 l 150.12 369.84 l 150.12 368.76 l 150.48 367.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 150.48 367.92 m 150.84 366.72 l 151.32 366 l 152.04 365.64 l 152.4 365.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 152.4 365.64 m 152.76 366.36 l 153.24 367.2 l 153.96 368.76 l 154.32 369.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 154.32 369.48 m 155.16 370.2 l 156.24 370.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 156.24 370.2 m 156.72 370.2 l 157.44 369.84 l 157.8 369.48 l 158.16 369.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 158.16 369.12 m 159 369.12 l 159.72 369.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 159.72 369.48 m 160.2 370.2 l 160.56 371.4 l 161.28 372.6 l 161.64 373.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 161.64 373.68 m 162.48 375.24 l 163.68 376.44 l S Q q 1 0 0 1 0 0 cm 0.36 w 163.68 376.44 m 164.4 378 l 165.12 378.72 l 165.6 379.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 165.6 379.08 m 166.68 379.56 l 167.04 379.08 l 167.52 378.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 167.52 378.72 m 167.88 377.16 l 168.24 375.24 l 168.6 373.32 l 169.08 371.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 169.08 371.4 m 169.8 368.28 l 170.52 366.72 l 171 366 l S Q q 1 0 0 1 0 0 cm 0.36 w 171 366 m 171.36 365.64 l 171.72 365.64 l 172.44 366 l 172.92 366 l S Q q 1 0 0 1 0 0 cm 0.36 w 172.92 366 m 173.64 365.64 l 174.84 365.28 l S Q q 1 0 0 1 0 0 cm 0.36 w 174.84 365.28 m 176.76 364.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 176.76 364.8 m 177.48 364.8 l 178.32 364.44 l S Q q 1 0 0 1 0 0 cm 0.36 w 178.32 364.44 m 179.04 364.08 l 180.24 363.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 180.24 363.36 m 180.96 362.16 l 182.16 360.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 182.16 360.96 m 182.88 359.88 l 184.08 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 184.08 359.04 m 185.28 359.04 l 186 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 186 359.4 m 186.72 360.24 l 187.56 360.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 187.56 360.6 m 188.28 360.96 l 189.48 360.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 189.48 360.96 m 191.4 361.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 191.4 361.8 m 193.32 362.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 193.32 362.52 m 195.24 363.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 195.24 363.36 m 196.8 363.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 196.8 363.72 m 198.72 363.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 198.72 363.36 m 199.56 362.88 l 200.64 362.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 200.64 362.52 m 201.48 362.52 l 202.56 362.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 202.56 362.52 m 203.76 363.36 l 204.48 364.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 204.48 364.08 m 206.04 364.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 206.04 364.8 m 206.88 364.8 l 207.96 364.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 207.96 364.8 m 208.44 364.44 l 208.8 363.72 l 209.52 363.36 l 209.88 362.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 209.88 362.88 m 210.36 362.88 l 210.72 363.36 l 211.44 363.72 l 211.92 364.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 211.92 364.08 m 212.28 364.08 l 213 363.72 l 213.84 363.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 213.84 363.36 m 214.56 363.36 l 215.28 363.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 215.28 363.72 m 216.12 363.72 l 217.32 363.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 217.32 363.36 m 219.24 362.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 219.24 362.88 m 221.16 362.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 221.16 362.88 m 222.24 362.52 l 223.08 362.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 223.08 362.52 m 223.8 362.88 l 224.64 362.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 224.64 362.88 m 225.36 362.52 l 226.56 362.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 226.56 362.16 m 227.28 362.52 l 228.48 362.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 228.48 362.88 m 229.2 363.36 l 230.4 363.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 230.4 363.72 m 232.32 363.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 232.32 363.72 m 233.04 363.36 l 233.88 362.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 233.88 362.88 m 234.6 362.52 l 235.8 362.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 235.8 362.16 m 236.52 362.16 l 237.36 362.52 l 237.72 362.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 237.72 362.16 m 238.08 361.32 l 238.44 360.6 l 239.28 359.4 l 239.64 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 239.64 359.04 m 240 359.04 l 240.84 359.04 l 241.56 359.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 241.56 359.88 m 243.12 360.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 243.12 360.6 m 245.04 360.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 245.04 360.96 m 246.96 360.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 246.96 360.96 m 247.8 360.96 l 248.88 360.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 248.88 360.96 m 249.24 360.6 l 250.08 360.24 l 250.44 359.88 l 250.8 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 250.8 359.4 m 251.64 359.4 l 252.36 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 252.36 359.4 m 253.2 359.88 l 254.28 360.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 254.28 360.6 m 255.12 360.96 l 256.2 360.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 256.2 360.96 m 258.12 361.32 l S Q q 1 0 0 1 0 0 cm 0.36 w 258.12 361.32 m 260.16 362.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 260.16 362.16 m 261.6 362.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 261.6 362.52 m 263.52 362.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 263.52 362.88 m 265.56 363.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 265.56 363.36 m 266.28 363.36 l 267.48 363.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 267.48 363.36 m 268.56 363.72 l 269.4 364.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 269.4 364.08 m 270.12 363.72 l 270.96 363.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 270.96 363.36 m 271.68 363.36 l 272.88 363.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 272.88 363.72 m 273.6 364.44 l 274.44 364.8 l 274.8 364.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 274.8 364.8 m 275.52 364.44 l 276.72 364.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 276.72 364.08 m 277.8 363.36 l 278.64 362.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 278.64 362.88 m 280.2 362.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 280.2 362.52 m 282.12 362.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 282.12 362.52 m 284.04 362.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 284.04 362.52 m 285.96 362.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 285.96 362.52 m 287.16 362.52 l 287.88 362.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 287.88 362.16 m 288.72 361.32 l 289.44 360.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 289.44 360.6 m 291.36 358.68 l S Q BT 0.9985 0 0 1 100.32 353.28 Tm /F2 5.7871 Tf 0.0272 Tc 0 Tw (0) Tj 0 16.92 TD (5) Tj -3.1247 17.04 TD -0.093 Tc (10) Tj 0 17.4 TD (15) Tj 0 16.92 TD (20) Tj 9.374 -77.52 TD 0.0272 Tc (0) Tj 44.8269 0 TD -0.2132 Tc (25) Tj 46.3893 0 TD (50) Tj 46.2691 0 TD -0.093 Tc (75) Tj 44.9471 0 TD -0.133 Tc (100) Tj 1 1 1 rg ET 308.28 335.76 196.32 90.36 re f* 323.04 417.12 m 495.6 417.12 l 495.6 353.64 l 323.04 353.64 l 323.04 417.12 l h f* q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 323.04 417.12 m 495.6 417.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 495.6 417.12 m 495.6 353.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 495.6 353.64 m 323.04 353.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 323.04 353.64 m 323.04 417.12 l S Q 323.04 417.12 m 323.04 353.64 l S 321.24 353.64 m 323.04 353.64 l S 321.24 369.48 m 323.04 369.48 l S 321.24 385.2 m 323.04 385.2 l S 321.24 401.4 m 323.04 401.4 l S 321.24 417.12 m 323.04 417.12 l S 323.04 353.64 m 495.6 353.64 l S 323.04 351.84 m 323.04 353.64 l S 366.12 351.84 m 366.12 353.64 l S 409.44 351.84 m 409.44 353.64 l S 452.52 351.84 m 452.52 353.64 l S 495.6 351.84 m 495.6 353.64 l S q 323.04 396.6 1.92 1.2 re h W n 0 0 0 rg 323.04 397.8 m 324.84 397.44 l 324.84 396.72 l 323.04 397.08 l h f* Q 0 0 0 rg 325.2 397.44 m 327 396.36 l 326.64 395.64 l 324.84 396.72 l h f* 327 396.36 m 328.32 395.64 l 327.96 394.92 l 326.64 395.64 l h f* 331.2 394.2 m 331.92 393.48 l 331.56 393.12 l 330.84 393.84 l h f* 331.92 393.48 m 333.72 390.24 l 333 389.88 l 331.2 393.12 l h f* 333.72 389.88 m 333.72 389.52 l 333 389.52 l 333 389.88 l h f* 334.8 387.36 m 335.52 385.92 l 334.8 385.56 l 334.08 387 l h f* 335.52 385.92 m 336.96 384.84 l 336.6 384.12 l 335.16 385.2 l h f* 336.6 384.12 1.8 0.72 re f* 340.56 382.32 m 342.36 379.56 l 341.64 379.2 l 339.84 381.96 l h f* 341.64 379.56 m 342.36 381.24 l 343.08 380.88 l 342.36 379.2 l h f* 343.08 384.12 m 343.44 384.84 l 344.16 384.48 l 343.8 383.76 l h f* 343.8 384.84 m 345.6 385.2 l 345.6 384.48 l 343.8 384.12 l h f* 345.96 385.2 m 347.4 383.4 l 346.68 383.04 l 345.24 384.84 l h f* 347.04 382.68 0.36 0.72 re f* 350.28 383.04 m 351 381.96 l 350.28 381.6 l 349.56 382.68 l h f* 351 381.96 m 352.8 380.52 l 352.44 379.92 l 350.64 381.24 l h f* 352.44 379.92 1.8 0.6 re f* 355.32 377.76 m 356.04 375.96 l 355.32 375.6 l 354.6 377.4 l h f* 356.04 375.6 m 356.76 372.36 l 356.04 372.36 l 355.32 375.6 l h f* 357.48 369.84 m 357.84 368.76 l 357.12 368.4 l 356.76 369.48 l h f* 357.84 368.76 m 359.64 365.52 l 358.92 365.16 l 357.12 368.4 l h f* 359.28 364.8 0.36 0.72 re f* 362.52 363.72 0.36 0.72 re f* 362.88 364.44 m 364.32 364.08 l 364.32 363.36 l 362.88 363.72 l h f* 364.32 363.36 1.8 0.72 re f* 365.76 364.08 m 367.2 364.8 l 367.56 364.08 l 366.12 363.36 l h f* 369.96 364.8 m 371.04 365.52 l 371.4 364.8 l 370.32 364.08 l h f* 371.4 364.8 1.44 0.72 re f* 372.48 365.52 m 374.28 366.6 l 374.64 365.88 l 372.84 364.8 l h f* 374.64 365.88 0.72 0.72 re f* 378.6 366.24 m 380.4 365.52 l 380.04 364.8 l 378.24 365.52 l h f* 380.4 365.52 m 382.2 364.8 l 381.84 364.08 l 380.04 364.8 l h f* 382.2 364.8 m 383.28 363.72 l 382.92 363.36 l 381.84 364.44 l h f* 385.8 361.92 1.08 0.72 re f* 386.88 361.92 1.8 0.72 re f* 388.32 362.64 m 390.12 363.36 l 390.48 362.64 l 388.68 361.92 l h f* 390.48 362.64 0.36 0.72 re f* 394.08 363.36 m 395.88 362.28 l 395.52 361.56 l 393.72 362.64 l h f* 395.88 362.28 m 397.68 361.56 l 397.32 360.84 l 395.52 361.56 l h f* 397.32 361.56 m 398.76 361.92 l 398.76 361.2 l 397.32 360.84 l h f* 401.64 360.84 0.72 0.72 re f* 402.36 361.56 m 404.16 361.92 l 404.16 361.2 l 402.36 360.84 l h f* 404.16 361.92 m 405.96 361.56 l 405.96 360.84 l 404.16 361.2 l h f* 405.6 361.56 m 406.32 361.92 l 406.68 361.2 l 405.96 360.84 l h f* 409.44 361.2 1.44 0.72 re f* 410.88 361.2 1.8 0.72 re f* 412.68 361.92 m 414.48 362.28 l 414.48 361.56 l 412.68 361.2 l h f* 417.36 361.92 0.72 0.72 re f* 417.72 362.64 m 419.16 363.36 l 419.52 362.64 l 418.08 361.92 l h f* 419.52 362.64 1.8 0.72 re f* 421.32 362.64 1.08 0.72 re f* 425.28 362.28 1.44 0.72 re f* 426.72 362.28 1.44 0.72 re f* 428.16 363 m 429.96 363.36 l 429.96 362.64 l 428.16 362.28 l h f* 429.96 362.64 0.36 0.72 re f* 432.84 364.44 m 433.2 364.8 l 433.56 364.44 l 433.2 364.08 l h f* 433.56 364.08 1.8 0.72 re f* 435.36 364.8 m 436.8 365.16 l 436.8 364.44 l 435.36 364.08 l h f* 436.8 365.16 m 438.24 364.8 l 438.24 364.08 l 436.8 364.44 l h f* 441.48 364.8 m 442.56 364.44 l 442.2 363.72 l 441.12 364.08 l h f* 442.56 364.44 m 444.36 363.36 l 444 362.64 l 442.2 363.72 l h f* 444.36 363.36 m 445.8 361.92 l 445.44 361.56 l 444 363 l h f* 448.32 360.48 0.72 0.72 re f* 449.04 360.48 1.68 0.72 re f* 450.72 361.2 m 452.52 360.84 l 452.52 360.12 l 450.72 360.48 l h f* 452.52 360.12 0.72 0.72 re f* 455.76 360.48 m 457.2 361.2 l 457.56 360.48 l 456.12 359.76 l h f* 457.56 360.48 1.8 0.72 re f* 459.36 360.48 1.8 0.72 re f* 463.32 363 m 464.04 363.36 l 464.4 362.64 l 463.68 362.28 l h f* 464.4 363.36 m 466.2 363 l 466.2 362.28 l 464.4 362.64 l h f* 465.84 363 m 467.64 363.72 l 468 363 l 466.2 362.28 l h f* 468 363 0.72 0.72 re f* 471.6 363.72 m 473.04 363.36 l 473.04 362.64 l 471.6 363 l h f* 472.68 363.36 m 474.48 364.08 l 474.84 363.36 l 473.04 362.64 l h f* 474.84 363.36 1.8 0.72 re f* 479.52 363.36 0.72 0.72 re f* 479.88 364.08 m 481.68 364.8 l 482.04 364.08 l 480.24 363.36 l h f* 481.68 364.8 m 483.12 365.52 l 483.48 364.8 l 482.04 364.08 l h f* 483.12 365.52 m 484.2 365.88 l 484.56 365.16 l 483.48 364.8 l h f* 487.44 365.88 m 488.88 366.24 l 488.88 365.52 l 487.44 365.16 l h f* 489.24 366.24 m 490.92 365.52 l 490.56 364.8 l 488.88 365.52 l h f* 490.56 365.52 m 492 365.88 l 492 365.16 l 490.56 364.8 l h f* 492 365.16 0.36 0.72 re f* q 323.04 393 0.84 1.68 re h W n 323.4 394.56 m 323.76 393.12 l 323.04 393.12 l 322.68 394.56 l h f* Q 324.12 390.24 m 324.48 388.8 l 323.76 388.8 l 323.4 390.24 l h f* 325.2 385.92 m 325.2 385.56 l 324.48 385.56 l 324.48 385.92 l h f* 325.2 385.92 m 325.56 384.84 l 324.84 384.48 l 324.48 385.56 l h f* 325.92 381.6 m 326.28 380.16 l 325.56 380.16 l 325.2 381.6 l h f* 327 377.4 m 327 376.68 l 326.28 376.68 l 326.28 377.4 l h f* 327 376.68 m 327 375.96 l 326.28 375.96 l 326.28 376.68 l h f* 327.36 373.08 m 327.36 371.64 l 326.64 371.64 l 326.64 373.08 l h f* 327.6 368.76 m 327.96 367.32 l 327.36 367.32 l 327 368.76 l h f* 328.32 364.44 m 328.32 363 l 327.6 363 l 327.6 364.44 l h f* 331.2 361.92 m 331.92 361.56 l 331.56 360.84 l 330.84 361.2 l h f* 331.2 361.56 m 331.92 361.92 l 332.28 361.2 l 331.56 360.84 l h f* 334.8 362.28 0.36 0.72 re f* 335.16 362.28 1.08 0.72 re f* 338.76 363 m 339.84 363.36 l 340.2 362.64 l 339.12 362.28 l h f* 339.84 363.36 m 340.2 363.72 l 340.56 363.36 l 340.2 363 l h f* 343.08 363.72 m 344.16 362.64 l 343.8 362.28 l 342.72 363.36 l h f* 346.32 360.12 m 347.4 359.76 l 347.04 359.04 l 345.96 359.4 l h f* 347.04 359.04 0.36 0.72 re f* 350.28 359.04 0.36 0.72 re f* 350.64 359.04 1.08 0.72 re f* 354.6 358.68 1.08 0.72 re f* 355.68 358.68 0.36 0.72 re f* 358.92 359.04 0.36 0.72 re f* 359.28 359.04 1.08 0.72 re f* 362.88 360.84 m 363.96 361.56 l 364.32 360.84 l 363.24 360.12 l h f* 367.2 360.84 0.72 0.72 re f* 367.92 360.84 0.6 0.72 re f* 371.4 363 m 372.84 363.36 l 372.84 362.64 l 371.4 362.28 l h f* 375.72 362.28 0.72 0.72 re f* 376.44 362.28 0.72 0.72 re f* 380.04 362.64 m 381.48 363 l 381.48 362.28 l 380.04 361.92 l h f* 384.36 361.92 0.72 0.72 re f* 385.44 362.64 m 386.16 362.28 l 385.8 361.56 l 385.08 361.92 l h f* 388.68 360.84 1.44 0.72 re f* 393 360.48 0.72 0.72 re f* 393.72 360.48 0.72 0.72 re f* 397.32 360.12 m 398.76 359.76 l 398.76 359.04 l 397.32 359.4 l h f* 401.28 357.96 1.08 0.72 re f* 402.36 357.96 0.36 0.72 re f* 404.88 360.48 m 405.6 360.84 l 405.96 360.12 l 405.24 359.76 l h f* 405.96 360.12 0.72 0.72 re f* 409.08 360.48 m 410.16 361.2 l 410.52 360.48 l 409.44 359.76 l h f* 413.04 360.84 m 414.12 361.2 l 414.48 360.48 l 413.4 360.12 l h f* 414.48 360.48 0.36 0.72 re f* 417.72 359.76 0.36 0.72 re f* 417.72 360.48 m 418.44 361.2 l 418.8 360.84 l 418.08 360.12 l h f* 421.68 361.56 m 423.12 361.92 l 423.12 361.2 l 421.68 360.84 l h f* 426 361.2 0.72 0.72 re f* 426.36 361.92 m 427.08 362.28 l 427.44 361.56 l 426.72 361.2 l h f* 430.32 361.2 1.44 0.72 re f* 435 361.2 m 435.72 360.84 l 435.36 360.12 l 434.64 360.48 l h f* 435 360.84 m 435.72 361.2 l 436.08 360.48 l 435.36 360.12 l h f* 438.96 361.56 m 440.4 361.92 l 440.4 361.2 l 438.96 360.84 l h f* 443.28 360.84 0.72 0.72 re f* 444 360.84 0.72 0.72 re f* 447.6 360.12 1.44 0.72 re f* 452.16 361.2 m 452.88 360.84 l 452.52 360.12 l 451.8 360.48 l h f* 452.88 360.84 m 453.6 360.48 l 453.24 359.76 l 452.52 360.12 l h f* 455.76 359.04 1.44 0.72 re f* 460.44 359.4 m 461.52 359.04 l 461.16 358.32 l 460.08 358.68 l h f* 461.16 358.32 0.36 0.72 re f* 464.76 359.76 m 466.2 359.04 l 465.84 358.32 l 464.4 359.04 l h f* 468.36 360.48 m 469.44 360.84 l 469.8 360.12 l 468.72 359.76 l h f* 469.8 360.12 0.36 0.72 re f* 473.04 361.56 m 474.48 361.2 l 474.48 360.48 l 473.04 360.84 l h f* 477 361.2 m 478.08 361.92 l 478.44 361.2 l 477.36 360.48 l h f* 478.44 361.2 0.36 0.72 re f* 481.68 361.56 0.36 0.72 re f* 481.68 362.28 m 482.76 362.64 l 483.12 361.92 l 482.04 361.56 l h f* 486 362.28 1.08 0.72 re f* 487.08 362.28 0.36 0.72 re f* 490.2 360.84 0.36 0.72 re f* 490.92 361.56 m 492 360.84 l 491.64 360.12 l 490.56 360.84 l h f* q 1 0 0 1 0 0 cm 323.04 394.08 2.28 3.36 re h W n 0.36 w 323.04 397.08 m 323.4 396.72 l 323.76 396.36 l 324.48 395.64 l 324.84 394.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 324.84 394.56 m 325.2 393.48 l 325.2 392.04 l 325.92 388.8 l 326.64 380.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 326.64 380.88 m 327 378.84 l 327 376.68 l 327.36 371.64 l 327.6 367.32 l 327.6 365.16 l 327.96 363.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 327.96 363.72 m 328.32 361.92 l 328.68 360.48 l 329.4 359.76 l 329.76 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 329.76 359.04 m 330.12 359.04 l 330.48 359.4 l 331.2 359.76 l 331.56 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 331.56 360.12 m 332.28 360.48 l 333.36 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 333.36 360.48 m 334.44 360.12 l 335.16 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 335.16 359.76 m 335.88 360.12 l 336.6 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 336.6 360.12 m 336.96 359.76 l 337.32 359.4 l 338.04 359.04 l 338.4 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 338.4 359.04 m 338.76 359.4 l 339.12 359.76 l 339.84 360.48 l 340.2 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 340.2 360.84 m 340.92 360.84 l 342 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 342 360.84 m 342.72 360.48 l 343.8 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 343.8 360.12 m 344.88 359.76 l 345.6 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 345.6 359.4 m 346.32 359.4 l 347.04 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 347.04 359.4 m 348.84 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 348.84 359.4 m 349.56 359.76 l 350.64 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 350.64 359.76 m 352.44 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 352.44 359.76 m 353.52 359.76 l 354.24 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 354.24 359.76 m 354.96 360.12 l 355.68 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 355.68 360.48 m 357.48 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 357.48 360.84 m 359.28 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 359.28 360.84 m 361.08 361.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 361.08 361.2 m 362.16 361.56 l 362.88 361.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 362.88 361.56 m 363.6 361.2 l 364.32 361.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 364.32 361.2 m 365.04 361.56 l 365.76 361.92 l 366.12 361.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 366.12 361.92 m 366.84 361.56 l 367.92 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 367.92 360.84 m 368.52 360.48 l 369.6 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 369.6 360.12 m 370.68 360.12 l 371.04 360.12 l 371.4 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 371.4 360.12 m 371.76 359.76 l 372.12 359.04 l 372.48 358.32 l 372.84 357.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 372.84 357.96 m 373.56 357.6 l 374.64 357.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 374.64 357.6 m 375 357.96 l 375.36 358.32 l 376.08 358.68 l 376.44 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 376.44 359.04 m 377.16 359.04 l 378.24 358.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 378.24 358.68 m 380.04 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 380.04 359.04 m 381.12 359.4 l 381.84 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 381.84 359.76 m 382.56 359.76 l 383.28 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 383.28 359.76 m 384 359.76 l 385.08 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 385.08 359.76 m 385.8 360.12 l 386.88 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 386.88 360.48 m 387.6 360.48 l 388.68 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 388.68 360.12 m 389.76 360.12 l 390.48 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 390.48 360.48 m 391.92 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 391.92 360.48 m 392.64 360.48 l 393.72 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 393.72 360.12 m 395.52 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 395.52 360.12 m 396.24 360.48 l 397.32 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 397.32 360.84 m 398.4 361.56 l 399.12 361.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 399.12 361.92 m 399.84 361.92 l 400.56 361.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 400.56 361.56 m 402.36 361.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 402.36 361.2 m 403.08 361.2 l 404.16 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 404.16 360.84 m 404.52 360.48 l 404.88 359.76 l 405.6 359.04 l 405.96 358.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 405.96 358.68 m 406.32 358.68 l 407.04 358.68 l 407.4 359.04 l 407.76 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 407.76 359.04 m 408.48 358.68 l 409.08 358.32 l S Q q 1 0 0 1 0 0 cm 0.36 w 409.08 358.32 m 409.8 358.68 l 410.88 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 410.88 359.04 m 411.6 359.04 l 412.68 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 412.68 359.04 m 413.04 358.68 l 413.4 358.32 l 414.12 357.96 l 414.48 357.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 414.48 357.6 m 414.84 357.6 l 415.2 357.96 l 416.28 358.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 416.28 358.68 m 418.08 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 418.08 359.04 m 418.8 358.68 l 419.52 358.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 419.52 358.68 m 420.24 359.04 l 421.32 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 421.32 359.4 m 422.04 359.4 l 423.12 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 423.12 359.04 m 423.84 358.68 l 424.92 358.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 424.92 358.68 m 426 358.68 l 426.72 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 426.72 359.04 m 427.44 359.04 l 428.16 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 428.16 359.4 m 428.88 360.12 l 429.6 360.48 l 429.96 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 429.96 360.48 m 430.32 360.48 l 430.68 360.12 l 431.4 359.76 l 431.76 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 431.76 359.76 m 432.48 360.12 l 433.56 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 433.56 360.48 m 434.64 361.2 l 435.36 361.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 435.36 361.56 m 436.08 361.56 l 436.8 361.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 436.8 361.2 m 437.52 360.84 l 438.6 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 438.6 360.84 m 439.32 361.2 l 440.4 361.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 440.4 361.56 m 442.2 362.28 l S Q q 1 0 0 1 0 0 cm 0.36 w 442.2 362.28 m 442.92 362.64 l 444 362.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 444 362.64 m 445.08 362.28 l 445.8 361.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 445.8 361.92 m 447.24 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 447.24 360.84 m 447.96 360.12 l 449.04 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 449.04 359.4 m 449.64 359.04 l 450.72 358.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 450.72 358.68 m 452.52 357.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 452.52 357.96 m 453.6 357.6 l 454.32 357.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 454.32 357.6 m 455.04 357.96 l 455.76 358.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 455.76 358.68 m 456.48 359.04 l 457.56 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 457.56 359.4 m 458.28 359.4 l 459.36 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 459.36 359.4 m 461.16 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 461.16 359.4 m 462.24 359.76 l 462.96 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 462.96 359.76 m 464.4 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 464.4 359.76 m 465.12 359.4 l 466.2 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 466.2 359.04 m 466.92 359.04 l 468 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 468 359.4 m 468.72 359.76 l 469.8 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 469.8 360.12 m 470.88 360.12 l 471.6 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 471.6 360.12 m 472.32 360.48 l 473.04 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 473.04 360.48 m 474.84 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 474.84 360.12 m 475.56 359.4 l 476.64 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 476.64 359.04 m 477.36 359.04 l 478.44 359.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 478.44 359.4 m 479.16 360.12 l 479.88 360.48 l 480.24 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 480.24 360.48 m 480.6 360.48 l 481.32 360.12 l 482.04 359.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 482.04 359.76 m 483.48 360.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 483.48 360.12 m 483.84 360.48 l 484.2 360.84 l 484.92 361.2 l 485.28 361.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 485.28 361.56 m 485.64 361.56 l 486 361.2 l 487.08 360.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 487.08 360.84 m 487.8 360.84 l 488.88 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 488.88 360.48 m 489.24 360.12 l 489.96 359.76 l 490.2 359.4 l 490.56 359.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 490.56 359.04 m 490.92 359.4 l 491.28 359.76 l 491.64 360.12 l 492 360.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 492 360.48 m 492.72 360.48 l 493.8 360.12 l S Q BT 0.999 0 0 1 315.84 351.84 Tm /F2 5.3796 Tf 0.0118 Tc (0) Tj 0 15.84 TD (5) Tj -2.8828 15.72 TD -0.1083 Tc (10) Tj 0 16.2 TD (15) Tj 0 15.72 TD (20) Tj 8.6484 -72 TD 0.0118 Tc (0) Tj 41.6807 0 TD -0.1083 Tc (25) Tj 43.4824 0 TD -0.2284 Tc (50) Tj 43.002 0 TD -0.1083 Tc (75) Tj 41.6807 0 TD (100) Tj ET BT 507.12 333.6 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj -319.68 -8.64 TD /F0 9.6944 Tf 0.0118 Tc 0 Tw (\() Tj 3.36 0 TD 0.0157 Tc (a) Tj 4.32 0 TD 0.0118 Tc (\)) Tj 3.12 0 TD 0 Tc -0.0236 Tw ( ) Tj 24.24 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD 0.0321 Tc 0 Tw (\(b\)) Tj 11.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -321 -13.08 TD /F1 11.68 Tf 0.0038 Tc 2.4762 Tw (Figure 3.) Tj 47.16 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD -0.0035 Tc 2.6035 Tw (Mean genetic diversity of representative runs plotted against the first 100) Tj 0 Tc 0.08 Tw ( ) Tj -52.8 -13.44 TD -0.0031 Tc 1.0431 Tw (generations; breast cancer data \(pop. size = 50\):) Tj 0 Tc -0.04 Tw ( ) Tj 234.48 0 TD 0.017 Tc 1.023 Tw (\(a\) steady) Tj 46.56 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0095 Tc 1.0895 Tw (state GA; \(b\) microbial) Tj 0 Tc -0.04 Tw ( ) Tj 115.8 0 TD 0.0047 Tc 0.0753 Tw (GA, ) Tj -400.68 -13.44 TD 0.0132 Tc 0.6668 Tw (both with) Tj 0 Tc 0.08 Tw ( ) Tj 48.84 0 TD /F3 11.68 Tf -0.033 Tc 0 Tw (m) Tj 8.4 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0205 Tc 0.6595 Tw (= 1.0%.) Tj 0 Tc 0.08 Tw ( ) Tj 41.16 0 TD /F3 11.68 Tf -0.0165 Tc 0 Tw (Legend:) Tj 38.04 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD 0.0882 Tc 0 Tw (long) Tj 20.88 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0016 Tc 0.6784 Tw (dashes: uni. c.) Tj 67.56 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0267 Tc 0.0533 Tw (o., ) Tj 15.36 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0092 Tc 0.8092 Tw (= 60%) Tj 31.68 0 TD -0 Tc 0.68 Tw (, short) Tj 29.88 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0016 Tc 0.6784 Tw (dashes: uni. c.) Tj 67.68 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0267 Tc 0.0533 Tw (o., ) Tj -408.72 -13.44 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0092 Tc -0.0308 Tw (= 10%) Tj 30.96 0 TD 0.002 Tc -0.022 Tw (, and solid line: mutation alone. ) Tj 150.48 0 TD 0 Tc -0.04 Tw ( ) Tj 1 1 1 rg ET 93.48 176.16 208.2 87.12 re f* 109.08 253.8 m 292.2 253.8 l 292.2 195.12 l 109.08 195.12 l 109.08 253.8 l h f* q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 109.08 253.8 m 292.2 253.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 292.2 253.8 m 292.2 195.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 292.2 195.12 m 109.08 195.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 109.08 195.12 m 109.08 253.8 l S Q 109.08 253.8 m 109.08 195.12 l S 107.16 195.12 m 109.08 195.12 l S 107.16 209.64 m 109.08 209.64 l S 107.16 224.4 m 109.08 224.4 l S 107.16 238.92 m 109.08 238.92 l S 107.16 253.8 m 109.08 253.8 l S 109.08 195.12 m 292.2 195.12 l S 109.08 193.32 m 109.08 195.12 l S 154.8 193.32 m 154.8 195.12 l S 200.88 193.32 m 200.88 195.12 l S 246.48 193.32 m 246.48 195.12 l S 292.2 193.32 m 292.2 195.12 l S 0 0 0 rg 109.08 250.32 m 111 249.96 l 111 249.24 l 109.08 249.6 l h f* 111 249.24 1.92 0.72 re f* 112.56 249.96 m 114 250.68 l 114.48 249.96 l 112.92 249.24 l h f* 117.48 248.76 m 118.68 247.68 l 118.2 247.32 l 117.12 248.4 l h f* 118.68 247.68 m 120.48 246.84 l 120.12 246.12 l 118.2 246.84 l h f* 119.76 246.84 m 121.68 248.04 l 122.04 247.32 l 120.12 246.12 l h f* 125.04 246.84 0.48 0.84 re f* 125.52 247.68 m 127.32 248.04 l 127.32 247.32 l 125.52 246.84 l h f* 127.8 248.04 m 129.6 247.32 l 129.24 246.48 l 127.32 247.32 l h f* 129.6 247.32 m 130.8 246.84 l 130.44 246.12 l 129.24 246.48 l h f* 133.08 246.84 m 134.28 248.04 l 134.64 247.68 l 133.44 246.48 l h f* 134.64 248.04 m 136.56 247.68 l 136.56 246.84 l 134.64 247.32 l h f* 136.56 247.68 m 138.36 247.32 l 138.36 246.48 l 136.56 246.84 l h f* 141.48 246.12 0.72 0.72 re f* 142.56 246.84 m 144.12 246.12 l 143.76 245.4 l 142.2 246.12 l h f* 144.12 246.12 m 146.04 244.2 l 145.68 243.84 l 143.76 245.76 l h f* 146.04 244.2 m 146.4 243.84 l 146.04 243.48 l 145.68 243.84 l h f* 148.32 241.2 m 149.88 239.64 l 149.4 239.28 l 147.96 240.84 l h f* 149.88 239.64 m 151.68 238.92 l 151.32 238.2 l 149.4 238.92 l h f* 151.32 238.92 m 152.88 238.56 l 152.88 237.72 l 151.32 238.2 l h f* 155.88 237.72 0.84 0.84 re f* 156.72 237.72 1.92 0.84 re f* 159 238.56 m 160.92 237 l 160.44 236.28 l 158.64 237.72 l h f* 160.92 236.64 m 160.92 236.28 l 160.08 236.28 l 160.08 236.64 l h f* 162 233.64 m 162.36 232.8 l 161.64 232.44 l 161.28 233.16 l h f* 162.36 232.8 m 164.28 228.24 l 163.56 227.88 l 161.64 232.44 l h f* 165.84 225.6 m 166.2 224.4 l 165.48 224.04 l 165 225.24 l h f* 165.48 224.4 m 167.28 225.24 l 167.76 224.4 l 165.84 223.68 l h f* 167.76 224.4 1.8 0.84 re f* 170.04 224.88 m 170.04 224.4 l 169.2 224.4 l 169.2 224.88 l h f* 170.76 221.4 m 171.84 216.84 l 171.12 216.84 l 170.04 221.4 l h f* 171.84 216.84 m 171.84 216.12 l 171.12 216.12 l 171.12 216.84 l h f* 172.68 213 m 173.4 209.64 l 172.68 209.64 l 171.84 213 l h f* 173.4 209.64 m 173.76 207.72 l 173.04 207.72 l 172.68 209.64 l h f* 174.6 204.72 m 175.32 200.16 l 174.6 200.16 l 173.76 204.72 l h f* 174.96 199.68 0.72 0.84 re f* 178.32 201.24 m 180.24 201.96 l 180.6 201.24 l 178.8 200.52 l h f* 180.24 201.96 m 181.8 202.8 l 182.16 201.96 l 180.6 201.24 l h f* 182.16 201.96 1.92 0.84 re f* 187.08 202.44 0.84 0.72 re f* 188.28 203.16 m 190.2 202.44 l 189.84 201.6 l 187.92 202.44 l h f* 189.84 201.6 1.44 0.84 re f* 191.28 201.6 1.2 0.84 re f* 195.48 201.6 1.56 0.84 re f* 197.04 202.44 m 198.96 201.96 l 198.96 201.24 l 197.04 201.6 l h f* 198.96 201.96 m 200.4 201.6 l 200.4 200.88 l 198.96 201.24 l h f* 200.4 200.88 0.48 0.72 re f* 203.88 201.24 0.36 0.72 re f* 204.24 201.24 1.92 0.72 re f* 206.16 201.96 m 208.08 202.44 l 208.08 201.6 l 206.16 201.24 l h f* 208.08 201.6 1.08 0.84 re f* 212.28 201.96 1.08 0.84 re f* 213.36 201.96 1.92 0.84 re f* 215.28 202.8 m 217.2 203.16 l 217.2 202.44 l 215.28 201.96 l h f* 217.2 202.44 0.36 0.72 re f* 220.56 202.8 1.92 0.72 re f* 222.48 202.8 1.92 0.72 re f* 224.4 203.52 m 225.96 203.88 l 225.96 203.16 l 224.4 202.8 l h f* 228.96 203.88 0.84 0.84 re f* 229.8 203.88 1.8 0.84 re f* 231.6 203.88 1.92 0.84 re f* 233.52 203.88 0.84 0.84 re f* 237.36 205.08 m 239.28 205.44 l 239.28 204.72 l 237.36 204.36 l h f* 239.28 205.44 m 240.72 205.08 l 240.72 204.36 l 239.28 204.72 l h f* 240.72 205.08 m 242.64 205.44 l 242.64 204.72 l 240.72 204.36 l h f* 245.76 204.72 0.72 0.72 re f* 246.48 205.44 m 248.4 205.08 l 248.4 204.36 l 246.48 204.72 l h f* 248.4 204.36 1.56 0.72 re f* 250.32 205.08 m 251.4 204.72 l 251.04 203.88 l 249.96 204.36 l h f* 254.52 203.88 m 255.96 203.16 l 255.6 202.44 l 254.04 203.16 l h f* 255.96 203.16 m 257.88 201.96 l 257.52 201.24 l 255.6 202.44 l h f* 257.88 201.96 m 259.08 200.52 l 258.24 200.16 l 257.16 201.6 l h f* 262.08 200.16 m 263.28 199.68 l 262.8 198.96 l 261.72 199.32 l h f* 262.8 198.96 1.92 0.72 re f* 264.72 198.96 1.92 0.72 re f* 266.64 198.96 0.36 0.72 re f* 269.76 200.16 m 271.56 201.24 l 272.04 200.52 l 270.12 199.32 l h f* 272.04 201.24 m 273.84 201.6 l 273.84 200.88 l 272.04 200.52 l h f* 273.84 201.6 m 275.4 201.96 l 275.4 201.24 l 273.84 200.88 l h f* 278.4 201.6 0.84 0.84 re f* 279.24 202.44 m 281.16 202.8 l 281.16 201.96 l 279.24 201.6 l h f* 281.16 201.96 1.8 0.84 re f* 282.96 201.96 0.84 0.84 re f* 286.8 202.8 m 288.36 202.44 l 288.36 201.6 l 286.8 201.96 l h f* 288.36 202.44 m 290.28 201.96 l 290.28 201.24 l 288.36 201.6 l h f* 109.44 250.68 m 110.64 249.6 l 110.28 249.24 l 109.08 250.32 l h f* 112.92 247.68 m 114.48 247.32 l 114.48 246.48 l 112.92 246.84 l h f* 117.48 245.4 m 118.68 244.56 l 118.2 243.84 l 117.12 244.56 l h f* 118.68 244.2 m 118.68 243.84 l 117.84 243.84 l 117.84 244.2 l h f* 119.76 240.84 m 120.12 239.28 l 119.4 239.28 l 119.04 240.84 l h f* 121.32 236.64 m 122.04 235.44 l 121.32 235.08 l 120.48 236.28 l h f* 123.6 232.44 m 123.96 231.36 l 123.24 230.88 l 122.76 232.08 l h f* 123.96 230.88 m 123.96 230.52 l 123.24 230.52 l 123.24 230.88 l h f* 125.52 228.24 m 125.88 227.16 l 125.04 226.8 l 124.68 227.88 l h f* 125.88 226.8 m 125.88 226.32 l 125.04 226.32 l 125.04 226.8 l h f* 126.6 223.32 m 126.6 221.76 l 125.88 221.76 l 125.88 223.32 l h f* 127.32 218.76 m 127.32 217.2 l 126.6 217.2 l 126.6 218.76 l h f* 128.16 214.2 m 128.16 212.64 l 127.32 212.64 l 127.32 214.2 l h f* 128.88 209.64 m 128.88 208.08 l 128.16 208.08 l 128.16 209.64 l h f* 129.24 205.08 m 129.6 203.52 l 128.88 203.52 l 128.52 205.08 l h f* 132 205.8 m 132.72 206.64 l 133.08 206.16 l 132.36 205.44 l h f* 133.08 205.8 0.36 0.84 re f* 136.56 207 1.44 0.72 re f* 141.48 207.72 m 142.56 207.36 l 142.2 206.64 l 141.12 207 l h f* 142.2 206.64 0.36 0.72 re f* 145.68 206.16 1.44 0.84 re f* 150.24 205.8 1.08 0.84 re f* 150.96 206.64 m 151.32 207 l 151.68 206.64 l 151.32 206.16 l h f* 154.44 206.64 0.36 0.72 re f* 154.8 206.64 1.08 0.72 re f* 159 207 1.44 0.72 re f* 163.56 207.36 0.36 0.72 re f* 163.56 208.08 m 164.64 208.44 l 165 207.72 l 163.92 207.36 l h f* 167.76 208.92 m 169.2 209.64 l 169.56 208.92 l 168.12 208.08 l h f* 172.68 209.64 0.36 0.72 re f* 172.68 210.36 m 173.76 210.72 l 174.24 210 l 173.04 209.64 l h f* 177.24 211.2 m 178.8 210.72 l 178.8 210 l 177.24 210.36 l h f* 181.8 208.44 0.36 0.84 re f* 182.52 209.28 m 183.72 208.92 l 183.36 208.08 l 182.16 208.44 l h f* 186 208.08 m 187.56 208.92 l 187.92 208.08 l 186.36 207.36 l h f* 190.56 206.64 0.72 0.72 re f* 190.92 207.36 m 191.64 207.72 l 192.12 207 l 191.28 206.64 l h f* 195.12 208.08 1.56 0.84 re f* 199.32 209.64 m 200.04 210 l 200.4 209.28 l 199.68 208.92 l h f* 200.4 209.28 0.84 0.72 re f* 204.24 210 m 205.8 209.64 l 205.8 208.92 l 204.24 209.28 l h f* 209.16 208.08 m 210.36 207 l 210 206.64 l 208.8 207.72 l h f* 212.64 207.36 m 213 207.72 l 213.36 207.36 l 213 207 l h f* 213.72 207.72 m 214.92 207.36 l 214.56 206.64 l 213.36 207 l h f* 217.92 207.36 m 219.48 206.64 l 219.12 205.8 l 217.56 206.64 l h f* 221.76 206.64 0.72 0.72 re f* 222.48 206.64 0.84 0.72 re f* 226.32 206.64 m 227.88 206.16 l 227.88 205.44 l 226.32 205.8 l h f* 230.88 205.08 m 232.08 204.72 l 231.6 203.88 l 230.52 204.36 l h f* 231.24 204.72 m 231.6 205.08 l 232.08 204.72 l 231.6 204.36 l h f* 234.72 205.8 0.72 0.84 re f* 235.44 205.8 0.72 0.84 re f* 239.64 205.44 m 241.2 204.72 l 240.72 203.88 l 239.28 204.72 l h f* 243.84 203.52 0.72 0.84 re f* 244.56 203.52 0.84 0.84 re f* 248.4 203.16 1.56 0.72 re f* 252.96 202.8 0.72 0.72 re f* 253.68 202.8 0.84 0.72 re f* 257.88 203.52 m 259.44 202.8 l 259.08 201.96 l 257.52 202.8 l h f* 262.08 201.24 0.72 0.72 re f* 262.8 201.24 0.84 0.72 re f* 266.64 201.96 m 268.2 201.6 l 268.2 200.88 l 266.64 201.24 l h f* 271.2 200.88 0.84 0.72 re f* 272.04 200.88 0.72 0.72 re f* 275.76 199.68 1.56 0.84 re f* 280.32 200.52 0.84 0.72 re f* 281.16 200.52 0.72 0.72 re f* 284.88 201.24 m 286.44 201.6 l 286.44 200.88 l 284.88 200.52 l h f* 289.44 201.24 0.84 0.72 re f* q 1 0 0 1 0 0 cm 109.08 246.84 2.4 3.48 re h W n 0.36 w 109.08 249.96 m 109.92 248.4 l 111 247.32 l S Q q 1 0 0 1 0 0 cm 0.36 w 111 247.32 m 112.2 246.84 l 112.56 246.48 l 112.92 246.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 112.92 246.12 m 113.28 245.04 l 113.64 243.48 l 114 241.56 l 114.48 239.28 l S Q q 1 0 0 1 0 0 cm 0.36 w 114.48 239.28 m 114.84 237.36 l 114.84 235.08 l 115.2 229.8 l 115.92 224.04 l 115.92 221.4 l 116.4 219.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 116.4 219.12 m 117.12 210 l 117.48 207.72 l 117.84 205.8 l 117.84 204.36 l 118.2 203.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 118.2 203.16 m 118.68 202.8 l 119.04 203.16 l 119.76 203.16 l 120.12 203.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 120.12 203.52 m 122.04 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 122.04 203.88 m 122.76 204.36 l 123.6 204.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 123.6 204.72 m 124.32 204.72 l 125.52 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 125.52 204.36 m 126.24 203.88 l 127.32 203.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 127.32 203.52 m 128.16 203.52 l 129.24 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 129.24 203.88 m 130.08 204.36 l 131.16 204.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 131.16 204.72 m 132.36 204.72 l 133.08 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 133.08 204.36 m 134.64 204.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 134.64 204.72 m 135.36 205.08 l 136.56 205.44 l S Q q 1 0 0 1 0 0 cm 0.36 w 136.56 205.44 m 137.28 205.44 l 138.36 205.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 138.36 205.08 m 139.2 204.72 l 140.28 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 140.28 204.36 m 141.48 204.36 l 142.2 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 142.2 204.36 m 142.92 204.36 l 143.76 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 143.76 203.88 m 145.68 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 145.68 203.88 m 146.4 203.52 l 147.6 203.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 147.6 203.52 m 148.32 203.88 l 149.4 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 149.4 204.36 m 150.6 204.36 l 151.32 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 151.32 204.36 m 152.88 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 152.88 204.36 m 154.8 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 154.8 204.36 m 156.72 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 156.72 204.36 m 158.64 204.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 158.64 204.72 m 159.72 205.44 l 160.44 205.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 160.44 205.8 m 162 206.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 162 206.16 m 163.92 206.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 163.92 206.16 m 164.64 206.64 l 165.84 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 165.84 206.64 m 167.76 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 167.76 206.64 m 169.56 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 169.56 206.64 m 170.76 207 l 171.48 207 l S Q q 1 0 0 1 0 0 cm 0.36 w 171.48 207 m 173.04 207 l S Q q 1 0 0 1 0 0 cm 0.36 w 173.04 207 m 173.76 207 l 174.96 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 174.96 206.64 m 175.68 206.64 l 176.88 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 176.88 206.64 m 177.24 206.16 l 177.6 205.8 l 178.32 205.44 l 178.8 205.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 178.8 205.08 m 179.88 205.08 l 180.6 205.44 l S Q q 1 0 0 1 0 0 cm 0.36 w 180.6 205.44 m 182.16 205.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 182.16 205.8 m 184.08 206.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 184.08 206.16 m 184.8 206.64 l 186 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 186 206.64 m 186.72 206.64 l 187.92 206.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 187.92 206.16 m 189 206.16 l 189.84 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 189.84 206.64 m 191.28 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 191.28 206.64 m 193.2 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 193.2 206.64 m 193.92 207 l 195.12 207 l S Q q 1 0 0 1 0 0 cm 0.36 w 195.12 207 m 197.04 207 l S Q q 1 0 0 1 0 0 cm 0.36 w 197.04 207 m 198.96 207 l S Q q 1 0 0 1 0 0 cm 0.36 w 198.96 207 m 199.68 206.64 l 200.4 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 200.4 206.64 m 201.24 206.64 l 202.32 207 l S Q q 1 0 0 1 0 0 cm 0.36 w 202.32 207 m 204.24 207 l S Q q 1 0 0 1 0 0 cm 0.36 w 204.24 207 m 204.96 207.36 l 206.16 207.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 206.16 207.36 m 208.08 207.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 208.08 207.36 m 209.16 207.72 l 210 207.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 210 207.72 m 211.44 207.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 211.44 207.72 m 213.36 207.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 213.36 207.36 m 215.28 207 l S Q q 1 0 0 1 0 0 cm 0.36 w 215.28 207 m 217.2 206.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 217.2 206.64 m 219.12 205.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 219.12 205.8 m 219.84 205.8 l 220.56 205.44 l S Q q 1 0 0 1 0 0 cm 0.36 w 220.56 205.44 m 221.04 205.08 l 221.4 204.36 l 222.12 203.52 l 222.48 203.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 222.48 203.16 m 223.32 203.16 l 224.4 203.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 224.4 203.16 m 225.12 203.52 l 226.32 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 226.32 203.88 m 227.4 203.88 l 228.24 203.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 228.24 203.52 m 229.8 203.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 229.8 203.52 m 230.52 203.52 l 231.6 203.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 231.6 203.52 m 232.44 203.88 l 233.52 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 233.52 204.36 m 234.36 204.72 l 235.44 205.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 235.44 205.08 m 236.16 205.08 l 237.36 205.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 237.36 205.08 m 238.44 204.72 l 239.28 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 239.28 203.88 m 240.72 203.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 240.72 203.52 m 241.56 203.52 l 242.64 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 242.64 203.88 m 244.56 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 244.56 203.88 m 246.48 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 246.48 203.88 m 248.4 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 248.4 203.88 m 249.96 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 249.96 203.88 m 251.76 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 251.76 203.88 m 252.6 204.36 l 253.68 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 253.68 204.36 m 255.6 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 255.6 204.36 m 257.52 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 257.52 204.36 m 259.08 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 259.08 204.36 m 261 204.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 261 204.36 m 262.8 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 262.8 203.88 m 264.72 203.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 264.72 203.16 m 265.92 202.8 l 266.64 201.96 l S Q q 1 0 0 1 0 0 cm 0.36 w 266.64 201.96 m 267.36 201.6 l 268.2 201.24 l S Q q 1 0 0 1 0 0 cm 0.36 w 268.2 201.24 m 268.92 201.24 l 270.12 201.24 l S Q q 1 0 0 1 0 0 cm 0.36 w 270.12 201.24 m 270.84 201.24 l 272.04 200.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 272.04 200.88 m 273.84 200.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 273.84 200.88 m 274.68 200.88 l 275.76 200.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 275.76 200.52 m 277.68 200.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 277.68 200.52 m 279.24 200.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 279.24 200.52 m 281.16 200.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 281.16 200.52 m 281.88 200.88 l 282.96 200.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 282.96 200.88 m 284.88 200.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 284.88 200.88 m 286.08 201.24 l 286.8 201.24 l S Q q 1 0 0 1 0 0 cm 0.36 w 286.8 201.24 m 288.36 201.24 l S Q q 1 0 0 1 0 0 cm 0.36 w 288.36 201.24 m 290.28 201.6 l S Q BT 0.9987 0 0 1 101.52 193.2 Tm /F2 5.7051 Tf -0.0481 Tc 0 Tw (0) Tj 0 14.4 TD (5) Tj -3.124 14.88 TD (10) Tj 0 14.4 TD (15) Tj 0 14.88 TD (20) Tj 9.2518 -67.68 TD (0) Tj 44.0964 0 TD (25) Tj 46.1391 0 TD (50) Tj 45.7786 0 TD -0.1682 Tc (75) Tj 44.2166 0 TD (100) Tj 1 1 1 rg ET 306.96 176.04 196.32 90 re f* 321.72 257.16 m 494.28 257.16 l 494.28 193.92 l 321.72 193.92 l 321.72 257.16 l h f* q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 321.72 257.16 m 494.28 257.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 494.28 257.16 m 494.28 193.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 494.28 193.92 m 321.72 193.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 1 1 1 RG 321.72 193.92 m 321.72 257.16 l S Q 321.72 257.16 m 321.72 193.92 l S 319.92 193.92 m 321.72 193.92 l S 319.92 209.64 m 321.72 209.64 l S 319.92 225.36 m 321.72 225.36 l S 319.92 241.44 m 321.72 241.44 l S 319.92 257.16 m 321.72 257.16 l S 321.72 193.92 m 494.28 193.92 l S 321.72 192.12 m 321.72 193.92 l S 364.8 192.12 m 364.8 193.92 l S 408 192.12 m 408 193.92 l S 451.2 192.12 m 451.2 193.92 l S 494.28 192.12 m 494.28 193.92 l S q 321.72 237.6 1.92 0.96 re h W n 0 0 0 rg 321.72 237.84 1.8 0.72 re f* Q 0 0 0 rg 323.52 237.84 1.8 0.72 re f* 325.32 238.56 m 326.76 238.2 l 326.76 237.48 l 325.32 237.84 l h f* 329.64 237.48 0.72 0.72 re f* 330.36 237.48 1.8 0.72 re f* 332.16 237.48 1.8 0.72 re f* 334.32 238.2 m 335.04 237.84 l 334.68 237.12 l 333.96 237.48 l h f* 337.56 237.12 m 339 236.76 l 339 236.04 l 337.56 236.4 l h f* 339 236.76 m 340.8 236.4 l 340.8 235.68 l 339 236.04 l h f* 340.8 236.4 m 342.6 236.04 l 342.6 235.32 l 340.8 235.68 l h f* 345.48 235.32 0.36 0.72 re f* 345.84 235.32 1.8 0.72 re f* 347.64 236.04 m 349.44 235.68 l 349.44 234.96 l 347.64 235.32 l h f* 349.8 235.68 m 350.88 235.32 l 350.52 234.6 l 349.44 234.96 l h f* 353.76 234.96 m 354.84 234.6 l 354.48 233.88 l 353.4 234.24 l h f* 354.48 234.6 m 356.28 234.24 l 356.28 233.52 l 354.48 233.88 l h f* 356.28 233.52 1.68 0.72 re f* 357.96 233.52 0.36 0.72 re f* 360.48 234.24 m 360.84 234.6 l 361.2 234.24 l 360.84 233.88 l h f* 360.84 234.6 m 362.64 235.68 l 363 234.96 l 361.2 233.88 l h f* 363.36 235.68 m 365.16 234.96 l 364.8 234.24 l 363 234.96 l h f* 365.16 234.96 m 366.24 234.6 l 365.88 233.88 l 364.8 234.24 l h f* 368.76 233.16 m 370.2 231.72 l 369.84 231.36 l 368.4 232.8 l h f* 369.84 231.72 m 371.64 231.36 l 371.64 230.64 l 369.84 231 l h f* 372 231.36 m 373.08 230.28 l 372.72 229.92 l 371.64 231 l h f* 375.6 229.2 m 377.4 228.24 l 377.04 227.52 l 375.24 228.6 l h f* 377.4 228.24 m 378.84 225 l 378.12 224.64 l 376.68 227.88 l h f* 379.56 221.76 m 380.64 216.72 l 379.92 216.72 l 378.84 221.76 l h f* 382.44 214.56 1.44 0.72 re f* 384.24 215.28 m 386.04 213.12 l 385.32 212.88 l 383.52 214.92 l h f* 386.04 213.12 m 386.4 212.16 l 385.68 211.8 l 385.32 212.88 l h f* 388.2 210 m 389.28 209.64 l 388.92 208.92 l 387.84 209.28 l h f* 388.92 209.64 m 390.72 209.28 l 390.72 208.56 l 388.92 208.92 l h f* 390.72 209.28 m 392.52 208.92 l 392.52 208.2 l 390.72 208.56 l h f* 392.52 208.2 0.36 0.72 re f* 395.76 207.48 1.8 0.72 re f* 397.56 208.2 m 399.36 208.56 l 399.36 207.84 l 397.56 207.48 l h f* 399.72 208.56 m 401.16 207.84 l 400.8 207.12 l 399.36 207.84 l h f* 403.68 206.76 0.72 0.72 re f* 404.4 207.48 m 406.2 207.84 l 406.2 207.12 l 404.4 206.76 l h f* 406.2 207.12 1.8 0.72 re f* 408 207.12 0.72 0.72 re f* 411.6 207.12 1.44 0.72 re f* 413.04 207.84 m 414.84 207.48 l 414.84 206.76 l 413.04 207.12 l h f* 414.84 206.76 1.8 0.72 re f* 419.52 206.4 0.72 0.72 re f* 420.24 207.12 m 421.68 207.48 l 421.68 206.76 l 420.24 206.4 l h f* 421.68 206.76 1.8 0.72 re f* 423.48 206.76 1.08 0.72 re f* 427.44 207.12 1.44 0.72 re f* 428.88 207.84 m 430.32 208.2 l 430.32 207.48 l 428.88 207.12 l h f* 430.32 207.48 1.8 0.72 re f* 432.12 207.48 0.36 0.72 re f* 435.36 207.84 0.36 0.72 re f* 435.72 208.56 m 437.52 208.92 l 437.52 208.2 l 435.72 207.84 l h f* 437.52 208.2 1.44 0.72 re f* 438.96 208.2 1.44 0.72 re f* 442.92 209.28 m 444 209.64 l 444.36 208.92 l 443.28 208.56 l h f* 444.36 208.92 1.8 0.72 re f* 446.16 209.64 m 447.6 210 l 447.6 209.28 l 446.16 208.92 l h f* 447.6 209.28 0.72 0.72 re f* 451.2 209.28 1.8 0.72 re f* 453 209.28 1.8 0.72 re f* 454.8 210 m 456.24 210.36 l 456.24 209.64 l 454.8 209.28 l h f* 459 209.64 0.72 0.72 re f* 459.72 210.36 m 461.52 210 l 461.52 209.28 l 459.72 209.64 l h f* 461.52 210 m 463.32 209.64 l 463.32 208.92 l 461.52 209.28 l h f* 463.68 209.64 m 464.4 209.28 l 464.04 208.56 l 463.32 208.92 l h f* 467.28 209.28 m 468.72 208.56 l 468.36 207.84 l 466.92 208.56 l h f* 468.36 208.56 m 470.16 208.2 l 470.16 207.48 l 468.36 207.84 l h f* 470.16 208.2 m 471.96 207.84 l 471.96 207.12 l 470.16 207.48 l h f* 474.48 205.68 m 475.56 204.6 l 475.2 204.24 l 474.12 205.32 l h f* 475.2 204.6 m 477 204.24 l 477 203.52 l 475.2 203.88 l h f* 477 204.24 m 478.8 204.6 l 478.8 203.88 l 477 203.52 l h f* 481.68 204.6 0.36 0.72 re f* 481.68 205.32 m 483.48 206.04 l 483.84 205.32 l 482.04 204.6 l h f* 483.48 206.04 m 485.28 206.76 l 485.64 206.04 l 483.84 205.32 l h f* 485.28 206.76 m 486.36 207.12 l 486.72 206.4 l 485.64 206.04 l h f* 489.24 208.56 m 490.32 208.92 l 490.68 208.2 l 489.6 207.84 l h f* 490.68 208.2 1.8 0.72 re f* q 321.72 237.96 1.56 1.32 re h W n 321.72 238.92 m 323.16 239.28 l 323.16 238.56 l 321.72 238.2 l h f* Q 326.04 237.84 0.72 0.72 re f* 327.12 238.56 m 327.48 238.2 l 327.12 237.84 l 326.76 238.2 l h f* 330 236.04 m 330.72 235.68 l 330.36 234.96 l 329.64 235.32 l h f* 330.72 235.68 m 331.08 234.96 l 330.36 234.6 l 330 235.32 l h f* 332.88 232.44 m 333.6 231 l 332.88 230.64 l 332.16 232.08 l h f* 334.68 227.88 m 335.04 226.44 l 334.32 226.44 l 333.96 227.88 l h f* 335.76 223.56 m 335.76 223.2 l 335.04 223.2 l 335.04 223.56 l h f* 335.76 223.56 m 336.12 222.48 l 335.4 222.12 l 335.04 223.2 l h f* 336.48 219.24 m 336.84 217.8 l 336.12 217.8 l 335.76 219.24 l h f* 337.2 215.28 m 337.56 214.2 l 336.84 213.84 l 336.48 214.92 l h f* 337.56 213.84 m 337.56 213.48 l 336.84 213.48 l 336.84 213.84 l h f* 337.92 210.72 m 338.28 209.28 l 337.56 209.28 l 337.2 210.72 l h f* 338.64 206.4 m 338.64 204.96 l 337.92 204.96 l 337.92 206.4 l h f* 339 202.08 m 339.36 200.64 l 338.64 200.64 l 338.28 202.08 l h f* 340.8 199.56 m 342.24 199.92 l 342.24 199.2 l 340.8 198.84 l h f* 345.12 199.56 0.72 0.72 re f* 345.84 199.56 0.72 0.72 re f* 349.44 201 m 350.88 201.36 l 350.88 200.64 l 349.44 200.28 l h f* 353.76 201.36 0.72 0.72 re f* 354.48 201.36 0.72 0.72 re f* 357.96 202.08 m 359.4 202.44 l 359.4 201.72 l 357.96 201.36 l h f* 362.28 202.44 0.72 0.72 re f* 363 202.44 0.72 0.72 re f* 366.6 203.52 m 368.04 203.88 l 368.04 203.16 l 366.6 202.8 l h f* 370.92 202.8 0.72 0.72 re f* 371.64 202.8 0.72 0.72 re f* 375.24 202.8 m 376.68 202.44 l 376.68 201.72 l 375.24 202.08 l h f* 379.92 201.72 m 380.64 201.36 l 380.28 200.64 l 379.56 201 l h f* 380.28 200.64 0.72 0.72 re f* 383.88 201 1.44 0.72 re f* 388.2 201.72 0.72 0.72 re f* 388.92 201.72 0.72 0.72 re f* 392.52 202.8 m 393.96 203.16 l 393.96 202.44 l 392.52 202.08 l h f* 396.84 202.08 0.72 0.72 re f* 397.92 202.8 m 398.64 202.44 l 398.28 201.72 l 397.56 202.08 l h f* 401.16 201.72 m 402.6 202.08 l 402.6 201.36 l 401.16 201 l h f* 405.48 201.36 0.72 0.72 re f* 406.2 201.36 0.72 0.72 re f* 409.8 202.44 m 411.24 202.08 l 411.24 201.36 l 409.8 201.72 l h f* 414.12 201.72 0.72 0.72 re f* 414.84 201.72 0.72 0.72 re f* 418.44 202.8 m 419.88 203.16 l 419.88 202.44 l 418.44 202.08 l h f* 422.76 202.8 0.72 0.72 re f* 423.48 202.8 0.72 0.72 re f* 427.08 203.88 m 428.52 204.24 l 428.52 203.52 l 427.08 203.16 l h f* 431.04 204.96 m 431.76 205.32 l 432.12 204.6 l 431.4 204.24 l h f* 432.12 204.6 0.72 0.72 re f* 436.08 204.96 m 437.16 203.88 l 436.8 203.52 l 435.72 204.6 l h f* 438.96 201.36 m 439.32 200.64 l 438.6 200.28 l 438.24 201 l h f* 438.96 199.92 0.72 0.72 re f* 442.56 199.92 1.44 0.72 re f* 446.88 199.92 0.72 0.72 re f* 447.6 199.92 0.72 0.72 re f* 451.2 200.28 1.44 0.72 re f* 455.52 200.28 0.72 0.72 re f* 456.24 200.28 0.72 0.72 re f* 459.72 200.64 1.44 0.72 re f* 464.04 200.64 0.72 0.72 re f* 464.76 200.64 0.72 0.72 re f* 468.36 201.72 m 469.8 201.36 l 469.8 200.64 l 468.36 201 l h f* 472.68 201 0.72 0.72 re f* 473.4 201 0.72 0.72 re f* 477 201 1.44 0.72 re f* 481.32 201 0.72 0.72 re f* 482.04 201 0.72 0.72 re f* 485.64 201 1.44 0.72 re f* 489.96 201 0.72 0.72 re f* 490.68 201 0.72 0.72 re f* q 1 0 0 1 0 0 cm 321.72 238.08 2.28 0.84 re h W n 0.36 w 321.72 238.56 m 323.52 238.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 323.52 238.56 m 325.32 238.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 325.32 238.56 m 326.04 238.92 l 326.76 238.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 326.76 238.92 m 327.48 238.56 l 328.56 237.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 328.56 237.84 m 329.28 237.48 l 330.36 237.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 330.36 237.12 m 331.08 236.4 l 332.16 235.32 l S Q q 1 0 0 1 0 0 cm 0.36 w 332.16 235.32 m 333.24 234.24 l 333.96 233.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 333.96 233.16 m 334.68 232.08 l 335.04 231.36 l 335.4 231.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 335.4 231.36 m 335.76 231.72 l 336.12 232.44 l 336.84 233.16 l 337.2 233.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 337.2 233.52 m 337.92 233.52 l 339 233.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 339 233.52 m 339.72 233.16 l 340.8 232.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 340.8 232.8 m 341.16 232.44 l 341.88 231.72 l 342.24 231 l 342.6 230.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 342.6 230.64 m 342.96 230.64 l 343.32 230.64 l 343.68 231 l 344.04 230.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 344.04 230.64 m 344.4 230.28 l 344.76 229.2 l 345.48 228.24 l 345.84 226.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 345.84 226.8 m 346.2 225.72 l 346.2 224.28 l 346.56 220.68 l 347.28 217.08 l 347.28 215.64 l 347.64 214.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 347.64 214.2 m 348 212.16 l 348.36 210.36 l 349.08 208.56 l 349.44 207.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 349.44 207.48 m 350.52 206.04 l 351.24 205.68 l S Q q 1 0 0 1 0 0 cm 0.36 w 351.24 205.68 m 351.6 205.68 l 351.96 206.04 l 352.32 206.4 l 352.68 206.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 352.68 206.4 m 353.04 206.4 l 353.4 206.04 l 354.48 205.32 l S Q q 1 0 0 1 0 0 cm 0.36 w 354.48 205.32 m 355.2 205.32 l 356.28 205.32 l S Q q 1 0 0 1 0 0 cm 0.36 w 356.28 205.32 m 356.64 205.68 l 357 206.04 l 357.72 206.4 l 357.96 206.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 357.96 206.76 m 359.04 206.76 l 359.76 206.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 359.76 206.4 m 360.48 206.04 l 361.2 206.04 l S Q q 1 0 0 1 0 0 cm 0.36 w 361.2 206.04 m 361.56 206.4 l 361.92 206.76 l 362.64 207.12 l 363 207.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 363 207.48 m 363.72 207.12 l 364.8 206.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 364.8 206.4 m 365.16 205.68 l 365.52 204.6 l 366.24 203.88 l 366.6 203.16 l S Q q 1 0 0 1 0 0 cm 0.36 w 366.6 203.16 m 366.96 202.8 l 367.68 203.16 l 368.4 203.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 368.4 203.52 m 369.12 204.24 l 369.84 205.32 l S Q q 1 0 0 1 0 0 cm 0.36 w 369.84 205.32 m 371.64 206.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 371.64 206.76 m 372.36 207.84 l 373.44 208.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 373.44 208.56 m 374.16 208.92 l 375.24 209.28 l S Q q 1 0 0 1 0 0 cm 0.36 w 375.24 209.28 m 376.32 210 l 377.04 211.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 377.04 211.08 m 378.48 212.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 378.48 212.52 m 378.84 212.88 l 379.2 213.48 l 379.92 213.84 l 380.28 213.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 380.28 213.84 m 380.64 213.12 l 381 212.52 l 381.72 211.44 l 382.08 210.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 382.08 210.36 m 382.8 208.56 l 383.52 207.84 l 383.88 207.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 383.88 207.48 m 384.24 207.48 l 384.96 207.48 l 385.68 207.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 385.68 207.84 m 387.12 208.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 387.12 208.56 m 388.92 209.28 l S Q q 1 0 0 1 0 0 cm 0.36 w 388.92 209.28 m 389.64 209.64 l 390.72 210 l S Q q 1 0 0 1 0 0 cm 0.36 w 390.72 210 m 391.44 210 l 392.52 209.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 392.52 209.64 m 393.6 209.28 l 394.32 208.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 394.32 208.92 m 395.04 209.28 l 395.76 209.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 395.76 209.64 m 396.48 209.64 l 397.56 210 l S Q q 1 0 0 1 0 0 cm 0.36 w 397.56 210 m 398.28 210.72 l 399.36 211.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 399.36 211.8 m 400.08 213.12 l 401.16 214.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 401.16 214.56 m 402.24 215.28 l 402.96 216 l S Q q 1 0 0 1 0 0 cm 0.36 w 402.96 216 m 403.68 216.72 l 404.4 217.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 404.4 217.08 m 405.12 217.44 l 406.2 217.44 l S Q q 1 0 0 1 0 0 cm 0.36 w 406.2 217.44 m 406.92 217.8 l 408 218.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 408 218.52 m 408.72 218.88 l 409.8 219.24 l S Q q 1 0 0 1 0 0 cm 0.36 w 409.8 219.24 m 410.88 219.24 l 411.24 219.24 l 411.6 218.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 411.6 218.88 m 411.96 218.16 l 412.32 217.08 l 413.04 214.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 413.04 214.92 m 413.76 213.12 l 414.84 211.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 414.84 211.08 m 415.2 210 l 415.56 208.56 l 416.28 207.12 l 416.64 206.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 416.64 206.4 m 417 206.4 l 417.36 206.76 l 418.08 207.12 l 418.44 207.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 418.44 207.48 m 420.24 208.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 420.24 208.56 m 420.96 209.28 l 421.68 210 l S Q q 1 0 0 1 0 0 cm 0.36 w 421.68 210 m 422.4 210.36 l 423.12 210.36 l 423.48 210 l S Q q 1 0 0 1 0 0 cm 0.36 w 423.48 210 m 423.84 209.28 l 424.2 208.2 l 424.92 207.48 l 425.28 206.4 l S Q q 1 0 0 1 0 0 cm 0.36 w 425.28 206.4 m 426 204.96 l 427.08 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 427.08 203.88 m 428.16 203.16 l 428.88 202.8 l S Q q 1 0 0 1 0 0 cm 0.36 w 428.88 202.8 m 429.6 201.72 l 429.96 201 l 430.32 200.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 430.32 200.64 m 431.04 200.28 l 432.12 200.28 l S Q q 1 0 0 1 0 0 cm 0.36 w 432.12 200.28 m 432.84 199.92 l 433.92 199.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 433.92 199.92 m 434.64 200.28 l 435.72 200.28 l S Q q 1 0 0 1 0 0 cm 0.36 w 435.72 200.28 m 436.8 199.92 l 437.52 199.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 437.52 199.56 m 438.96 199.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 438.96 199.2 m 439.68 199.56 l 440.76 199.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 440.76 199.56 m 441.48 199.56 l 442.56 199.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 442.56 199.2 m 443.28 199.2 l 444.36 198.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 444.36 198.84 m 445.44 198.12 l 446.16 197.76 l S Q q 1 0 0 1 0 0 cm 0.36 w 446.16 197.76 m 446.88 197.76 l 447.6 198.12 l S Q q 1 0 0 1 0 0 cm 0.36 w 447.6 198.12 m 449.4 198.48 l S Q q 1 0 0 1 0 0 cm 0.36 w 449.4 198.48 m 451.2 198.84 l S Q q 1 0 0 1 0 0 cm 0.36 w 451.2 198.84 m 453 199.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 453 199.2 m 454.8 199.2 l S Q q 1 0 0 1 0 0 cm 0.36 w 454.8 199.2 m 455.52 199.56 l 456.24 199.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 456.24 199.56 m 458.04 199.56 l S Q q 1 0 0 1 0 0 cm 0.36 w 458.04 199.56 m 459.72 199.92 l S Q q 1 0 0 1 0 0 cm 0.36 w 459.72 199.92 m 461.52 200.28 l S Q q 1 0 0 1 0 0 cm 0.36 w 461.52 200.28 m 463.32 200.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 463.32 200.64 m 464.76 201 l S Q q 1 0 0 1 0 0 cm 0.36 w 464.76 201 m 466.56 201.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 466.56 201.36 m 468.36 201.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 468.36 201.72 m 470.16 202.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 470.16 202.08 m 471.96 202.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 471.96 202.08 m 472.68 201.72 l 473.4 201.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 473.4 201.36 m 474.12 201 l 475.2 200.64 l S Q q 1 0 0 1 0 0 cm 0.36 w 475.2 200.64 m 475.92 200.64 l 477 201 l S Q q 1 0 0 1 0 0 cm 0.36 w 477 201 m 478.8 201.36 l S Q q 1 0 0 1 0 0 cm 0.36 w 478.8 201.36 m 480.6 201.72 l S Q q 1 0 0 1 0 0 cm 0.36 w 480.6 201.72 m 482.04 202.08 l S Q q 1 0 0 1 0 0 cm 0.36 w 482.04 202.08 m 482.76 202.08 l 483.84 202.44 l S Q q 1 0 0 1 0 0 cm 0.36 w 483.84 202.44 m 484.56 203.16 l 485.64 203.52 l S Q q 1 0 0 1 0 0 cm 0.36 w 485.64 203.52 m 486.36 203.88 l 487.44 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 487.44 203.88 m 488.52 204.24 l 489.24 204.6 l S Q q 1 0 0 1 0 0 cm 0.36 w 489.24 204.6 m 489.96 204.24 l 490.68 203.88 l S Q q 1 0 0 1 0 0 cm 0.36 w 490.68 203.88 m 492.48 202.8 l S Q BT 1.0046 0 0 1 314.52 192.12 Tm /F2 5.3592 Tf 0.0065 Tc (0) Tj 0 15.72 TD (5) Tj -2.8668 15.72 TD -0.1124 Tc (10) Tj 0 15.96 TD (15) Tj 0 15.72 TD (20) Tj 8.6004 -71.76 TD 0.0065 Tc (0) Tj 41.4494 0 TD -0.1124 Tc (25) Tj 43.0022 0 TD (50) Tj 43.0022 0 TD (75) Tj 41.4494 0 TD (100) Tj ET BT 505.92 173.76 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj -318.48 -8.64 TD /F0 9.6944 Tf 0.0118 Tc 0 Tw (\() Tj 3.36 0 TD 0.0157 Tc (a) Tj 4.32 0 TD 0.0118 Tc (\)) Tj 3.12 0 TD 0 Tc -0.0236 Tw ( ) Tj 24.24 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD ( ) Tj 35.04 0 TD 0.0118 Tc 0 Tw (\() Tj 3.36 0 TD -0.0472 Tc (b) Tj 4.8 0 TD 0.0118 Tc (\)) Tj 3.24 0 TD 0 Tc -0.0236 Tw ( ) Tj -321 -13.08 TD /F1 11.68 Tf 0.0038 Tc 2.4762 Tw (Figure 4.) Tj 47.16 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD -0.0035 Tc 2.6035 Tw (Mean genetic diversity of representative runs plotted against the first 100) Tj 0 Tc 0.08 Tw ( ) Tj -52.8 -13.44 TD -0.0064 Tc 0.6864 Tw (generations: \(a\)) Tj 0 Tc -0.04 Tw ( ) Tj 77.16 0 TD -0.0155 Tc 0.7755 Tw (settings as for Fig.) Tj 0 Tc -0.04 Tw ( ) Tj 91.92 0 TD 0.04 Tc 0 Tw (3) Tj 5.88 0 TD -0.0054 Tc 0.7121 Tw (a except using diabetes data; \(b\) settings as for Fig.) Tj 0 Tc 0.08 Tw ( ) Tj -174.96 -13.44 TD 0.04 Tc 0 Tw (3) Tj 5.88 0 TD 0 Tc 0.0195 Tw (a except with pop. size = 500) Tj 136.68 0 TD 0.08 Tc 0 Tw (. ) Tj 5.88 0 TD /F3 11.68 Tf -0.0336 Tc (Legend:) Tj 38.04 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0196 Tc 0.1396 Tw (see Fig. 4. ) Tj 51 0 TD 0 Tc -0.04 Tw ( ) Tj -214.2 -13.44 TD ( ) Tj ET endstream endobj 94 0 obj 83003 endobj 92 0 obj << /Type /Page /Parent 89 0 R /Resources << /Font 97 0 R /ProcSet 2 0 R >> /Contents 93 0 R >> endobj 97 0 obj << /F0 6 0 R /F1 19 0 R /F2 22 0 R /F3 36 0 R /F4 58 0 R /F7 95 0 R >> endobj 99 0 obj << /Length 100 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (15) Tj ET Q BT 88.08 725.04 TD /F0 11.68 Tf 0.0061 Tc 0.2239 Tw (Note that in all runs with a high probability of crossover the ) Tj 286.32 0 TD -0.003 Tc -0.037 Tw (initial ) Tj 30.48 0 TD -0.0058 Tc 0.2658 Tw (region of high genetic ) Tj -316.8 -13.44 TD 0.0042 Tc 2.8958 Tw (diversity is extended.) Tj 0 Tc -0.04 Tw ( ) Tj 111.36 0 TD 0.0404 Tc 2.7996 Tw (This is) Tj 0 Tc -0.04 Tw ( ) Tj 40.32 0 TD 0.0022 Tc 2.9311 Tw (likely due to the fact that the crossover operator can) Tj 0 Tc 0.08 Tw ( ) Tj -151.68 -13.32 TD -0.0024 Tc 3.8924 Tw (introduce new genetic variants when applied before genetic convergence.) Tj 0 Tc 0.08 Tw ( ) Tj 380.64 0 TD -0.0128 Tc 3.9328 Tw (If using) Tj 0 Tc -0.04 Tw ( ) Tj -380.64 -13.44 TD -0.0022 Tc 0.2299 Tw (standard crossover does make a significant difference to the outcome and/or efficiency of ) Tj 0 -13.44 TD -0 Tc 2.3602 Tw (an evolutionary run it could ) Tj 2.32 Tc 0 Tw (b) Tj 150.36 0 TD 0 Tc 2.3595 Tw (e because it has such an evident effect on) Tj 0 Tc -0.04 Tw ( ) Tj 216.84 0 TD 0.0023 Tc -0.0423 Tw (the ) Tj 19.68 0 TD -0.0188 Tc -0.0212 Tw (genetic ) Tj -386.88 -13.44 TD 0.0311 Tc 0 Tw (diversity) Tj 40.8 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD 0 Tc 1.5598 Tw (during the initial generations) Tj 139.32 0 TD -0.04 Tc 0 Tw (. ) Tj 7.44 0 TD 0.0053 Tc 1.4947 Tw (Its impact will then decrease with convergence) Tj 0 Tc 0.08 Tw ( ) Tj -192 -13.44 TD -0.0107 Tc 1.6507 Tw (until it disappears when the genetic difference between individuals is limited to single) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0096 Tc 1.5296 Tw (mutational steps. Note) Tj 0 Tc -0.16 Tw ( ) Tj 112.08 0 TD 0.0359 Tc 0.0441 Tw (also ) Tj 23.4 0 TD -0.0069 Tc 1.5269 Tw (that, as expected, larger populations) Tj 0 Tc -0.04 Tw ( ) Tj 178.32 0 TD -0.0092 Tc 1.5292 Tw (\(500 individuals\) with) Tj 0 Tc -0.04 Tw ( ) Tj -313.8 -13.44 TD 0.0105 Tc 0.3395 Tw (large amounts of crossover \() Tj 134.4 0 TD /F3 11.68 Tf -0.0259 Tc 0 Tw (c) Tj 5.16 -1.56 TD /F3 7.8256 Tf 0.0472 Tc (p) Tj 3.96 1.56 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD 0.0208 Tc 0.2992 Tw (= 60%) Tj 31.2 0 TD -0.0494 Tc 0.0094 Tw (\) ) Tj 7.2 0 TD -0.0111 Tc -0.0289 Tw (require ) Tj 36.36 0 TD -0.0075 Tc -0.2725 Tw (relatively ) Tj 47.52 0 TD -0.0018 Tc 0.3218 Tw (more generations before genetic ) Tj -269.16 -13.44 TD -0.0106 Tc 0.0306 Tw (convergence, as ) Tj 77.4 0 TD 0.0182 Tc 0 Tw (illustrated) Tj 46.92 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0185 Tc 0.0385 Tw (in Fig. 4b) Tj 45 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0204 Tc 0.1004 Tw (when compared to Fig. 3a) Tj 121.56 0 TD 0.08 Tc 0 Tw (. ) Tj 6 0 TD 0 Tc -0.04 Tw ( ) Tj -285.24 -13.44 TD ( ) Tj -17.4 -13.68 TD /F1 11.68 Tf 0.06 Tc 0 Tw (5.) Tj 8.76 0 TD /F2 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 8.76 0 TD /F1 11.68 Tf -0.0012 Tc 0 Tw (Discussion) Tj 52.56 0 TD 0 Tc -0.04 Tw ( ) Tj -70.08 -13.2 TD /F0 11.68 Tf ( ) Tj 0 -13.44 TD -0.0141 Tc -0.0259 Tw (The ) Tj 21.12 0 TD -0.0194 Tc -0.1406 Tw (benchmark ) Tj 54.84 0 TD -0.0177 Tc 0 Tw (experime) Tj 43.56 0 TD -0.0111 Tc 0.0911 Tw (nts presented in this paper ) Tj 125.16 0 TD -0.0038 Tc 0.1438 Tw (provide two important results: \(i\)) Tj 155.4 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.03 Tc -0.13 Tw (that ) Tj -403.08 -13.44 TD 0.0033 Tc 0.1834 Tw (a detrimental effect attributable to the permutation problem, a ) Tj 293.4 0 TD 0.0078 Tc -0.0478 Tw (hypothetical ) Tj 61.08 0 TD -0.0242 Tc -0.0158 Tw (problem ) Tj 42 0 TD -0 Tc 0.0805 Tw (often ) Tj -396.48 -13.44 TD -0.0028 Tc 0.4694 Tw (associated with the artificial evolution of neural networks when using) Tj 0 Tc -0.04 Tw ( ) Tj 332.76 0 TD 0.0035 Tc 0.0765 Tw (standard ) Tj 42.96 0 TD 0 Tc 0 Tw (crossover) Tj 44.76 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0155 Tc 0 Tw (operato) Tj 34.92 0 TD -0.0765 Tc (rs) Tj 8.4 0 TD -0.0134 Tc 1.1134 Tw (, was not found in most cases) Tj 143.64 0 TD 0.004 Tc 1.066 Tw (, and \(ii\) that crossover was generally applied to) Tj 0 Tc 0.08 Tw ( ) Tj -186.96 -13.32 TD -0.0068 Tc 1.4668 Tw (genetically converged populations) Tj 162.96 0 TD -0.04 Tc 0 Tw (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.0249 Tc 1.4489 Tw (For most of the settings that) Tj 0 Tc -0.04 Tw ( ) Tj 141.6 0 TD -0.0294 Tc 0 Tw (we) Tj 13.56 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0044 Tc 1.4044 Tw (tested the effect of) Tj 0 Tc -0.04 Tw ( ) Tj -329.76 -13.44 TD -0.0039 Tc 1.0919 Tw (crossover is statistically negligible. In addition,) Tj 0 Tc -0.04 Tw ( ) Tj 230.16 0 TD 0.0502 Tc -0.0902 Tw (our ) Tj 19.68 0 TD 0.0078 Tc 1.0562 Tw (results show that in all expe) Tj 135.6 0 TD -0 Tc 0.08 Tw (riments ) Tj -385.44 -13.44 TD 0.0136 Tc 1.6264 Tw (the use of a) Tj 0 Tc 0.08 Tw ( ) Tj 63.12 0 TD 0.0035 Tc 0.0765 Tw (standard ) Tj 44.28 0 TD -0.0015 Tc 1.6865 Tw (crossover operator never made the classification accuracy of the) Tj 0 Tc -0.04 Tw ( ) Tj -107.4 -13.44 TD 0.001 Tc 1.779 Tw (evolved solutions significantly worse than when using mutation alone. Further, in all) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD 0.0064 Tc 0.1936 Tw (experiments with a small population ) Tj 174.24 0 TD 0.0194 Tc 0.0606 Tw (size ) Tj 21.36 0 TD 0.0113 Tc 0.2847 Tw (\(50\) the inclusion of crossover w) Tj 155.64 0 TD -0.0033 Tc 0.2033 Tw (as never found ) Tj -351.24 -13.44 TD -0.0092 Tc 1.2892 Tw (to increase the computational cost of the searches. However, we did find some support) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.0099 Tc 0.5699 Tw (for an effect) Tj 0 Tc -0.04 Tw ( ) Tj 61.56 0 TD -0.0043 Tc -0.1557 Tw (potentially ) Tj 53.52 0 TD -0.0085 Tc 0.5818 Tw (attributable to the permutation problem in searches using a large) Tj 0 Tc -0.04 Tw ( ) Tj -115.08 -13.44 TD -0.0036 Tc 0.0036 Tw (population size \(500\) ) Tj 102.36 0 TD -0.0018 Tc 0 Tw (with) Tj 20.76 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0137 Tc -0.0297 Tw (a high probability \(60%\) of applying) Tj 171.84 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0175 Tc 0.0325 Tw (the crossover operator. In ) Tj -300.72 -13.44 TD -0.0283 Tc 0 Tw (several) Tj 33 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0075 Tc -0.0148 Tw (of those experiments there was a statistically significant increase in computational ) Tj -36 -13.44 TD -0.0015 Tc 1.0415 Tw (cost compared to the runs with mutation alone; runs with) Tj 0 Tc 0.08 Tw ( ) Tj 279.6 0 TD -0.0035 Tc 1.0435 Tw (large populations and a) Tj 0 Tc -0.04 Tw ( ) Tj 115.68 0 TD -0.0221 Tc -0.0179 Tw (small ) Tj -395.28 -13.44 TD -0.0024 Tc 3.5024 Tw (probability \(10%\) of crossover were) Tj 0 Tc -0.04 Tw ( ) Tj 189.72 0 TD -0.0043 Tc -0.0357 Tw (never ) Tj 32.4 0 TD 0.0221 Tc 0.0579 Tw (found ) Tj 33.84 0 TD -0.0098 Tc 3.4498 Tw (to have) Tj 0 Tc -0.04 Tw ( ) Tj 43.92 0 TD 0.0019 Tc 3.4981 Tw (a statistically significant) Tj 0 Tc 0.08 Tw ( ) Tj -299.88 -13.44 TD -0.013 Tc 0 Tw (increase) Tj 38.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0048 Tc 0.3248 Tw (in computational cost.) Tj 104.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3.24 0 TD -0.0074 Tc 0.3141 Tw (This supports the intuition that the crossover operator can ) Tj -148.92 -13.44 TD -0.0025 Tc 3.148 Tw (potentially be more disruptive when used in conjunction with large populations, as) Tj 0 Tc -0.16 Tw ( ) Tj 0 -13.44 TD -0.0016 Tc -0.0184 Tw (discussed in section 2.2 of this paper.) Tj 174.48 0 TD 0 Tc -0.04 Tw ( ) Tj -174.48 -13.44 TD ( ) Tj 0 -13.32 TD -0.0659 Tc 0.8659 Tw (We ) Tj 0.8141 Tc 0 Tw (a) Tj 25.08 0 TD 0.0058 Tc 0.8182 Tw (rgue that the nature and degree of convergence of the population) Tj 310.08 0 TD -0.0029 Tc 0.8829 Tw (s \(as illustrated in) Tj 0 Tc -0.04 Tw ( ) Tj -335.16 -13.44 TD 0.0463 Tc 0 Tw (Fig) Tj 15.48 0 TD 0.08 Tc (. ) Tj 7.32 0 TD 0.04 Tc (3) Tj 5.76 0 TD 0 Tc -0.04 Tw ( ) Tj 4.44 0 TD -0.022 Tc 0.102 Tw (and ) Tj 21.12 0 TD 0.04 Tc 0 Tw (4) Tj 5.88 0 TD 0.0029 Tc 1.4071 Tw (\) provides a factor that can fully explain the summary of results above.) Tj 0 Tc -0.04 Tw ( ) Tj 351.96 0 TD -0.033 Tc 0 Tw (A) Tj 8.52 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0042 Tc 1.0442 Tw (population that is fully converged will not experience any deleterious effect of cro) Tj 396.36 0 TD 0.0212 Tc 0.0588 Tw (ssing ) Tj -396.36 -13.44 TD -0.0306 Tc 1.6706 Tw (over ANN) Tj 50.52 0 TD 0.0165 Tc 0 Tw (s) Tj 4.44 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD -0.0118 Tc 1.6518 Tw (because there are) Tj 0 Tc -0.16 Tw ( ) Tj 88.08 0 TD 0.0033 Tc 1.5767 Tw (unlikely to be) Tj 0 Tc -0.04 Tw ( ) Tj 72 0 TD -0.0094 Tc 1.6494 Tw (alternate permutations.) Tj 0 Tc -0.04 Tw ( ) Tj 113.04 0 TD -0.0259 Tc 1.6659 Tw (Of course) Tj 47.28 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 4.56 0 TD -0.0149 Tc -0.0251 Tw (normal ) Tj -387.48 -13.44 TD -0.0034 Tc 1.0526 Tw (evolutionary search will never be fully converged since there is a continual injection of) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.0103 Tc 0.3783 Tw (new genetic material through mutation. If populations are converged to with) Tj 359.52 0 TD -0 Tc 0.2406 Tw (in the effects ) Tj -359.52 -13.44 TD -0.0041 Tc 0.1241 Tw (of the mutation operator then crossover will essentially become another \(biased\) mutation ) Tj 0 -13.44 TD -0.0161 Tc 0.0961 Tw (operator of similar magnitude and the permutation problem can not be manifest.) Tj 374.28 0 TD 0 Tc -0.04 Tw ( ) Tj -374.28 -13.44 TD ( ) Tj 0 -13.44 TD -0.033 Tc 0 Tw (A) Tj 8.4 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD 0.02 Tc 0 Tw (disruptive) Tj 46.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0061 Tc 0.9561 Tw (effect attributable to the permutati) Tj 163.2 0 TD -0.0126 Tc 0.9926 Tw (on problem might be pr) Tj 114.12 0 TD -0.0016 Tc 0.9216 Tw (esent right at) Tj 62.16 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD 0.0023 Tc -0.0423 Tw (the ) Tj -406.2 -13.44 TD -0.0287 Tc 0.1887 Tw (beginning of the ) Tj 80.04 0 TD -0 Tc -0.2798 Tw (evolutionary ) Tj 62.28 0 TD -0.0054 Tc 0.2354 Tw (search and during convergence. However, in some respects ) Tj -142.32 -13.44 TD 0.0106 Tc -0.0506 Tw (this ) Tj 20.52 0 TD -0.0097 Tc 0.6897 Tw (is likely) Tj 0 Tc -0.16 Tw ( ) Tj 41.64 0 TD -0 Tc 0.7073 Tw (an additional population randomization contributing to a wider sampling of) Tj 0 Tc 0.08 Tw ( ) Tj -62.16 -13.44 TD -0.0119 Tc 0.1452 Tw (the search space. Certainly with small populations there is ) Tj 275.16 0 TD -0.0077 Tc 0.0677 Tw (a real possibility that the initial ) Tj -275.16 -13.44 TD 0.0021 Tc 0.6879 Tw (population sampling will not contain members close to a global optimum; the additional) Tj 0 Tc -0.04 Tw ( ) Tj ET endstream endobj 100 0 obj 11361 endobj 98 0 obj << /Type /Page /Parent 89 0 R /Resources << /Font << /F0 6 0 R /F1 19 0 R /F2 22 0 R /F3 36 0 R >> /ProcSet 2 0 R >> /Contents 99 0 R >> endobj 102 0 obj << /Length 103 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (16) Tj ET Q BT 88.08 725.04 TD /F0 11.68 Tf -0.0067 Tc 2.8031 Tw (randomization provided by the permutation effect of the crossover operator offers a) Tj 0 Tc -0.04 Tw ( ) Tj 0 -13.44 TD -0.0009 Tc 3.3209 Tw (mechanism to) Tj 0 Tc -0.04 Tw ( ) Tj 74.88 0 TD 0.0016 Tc 3.3184 Tw (more fully) Tj 0 Tc -0.16 Tw ( ) Tj 58.68 0 TD -0.0149 Tc -0.0251 Tw (sample ) Tj 39.36 0 TD 0.0041 Tc 3.3759 Tw (the initial condit) Tj 83.4 0 TD -0.0062 Tc 3.4162 Tw (ions of the search space) Tj 124.44 0 TD -0.04 Tc 0 Tw (. ) Tj 9.36 0 TD -0.0494 Tc (I) Tj 3.84 0 TD 0.0418 Tc 3.2782 Tw (n the) Tj 0 Tc 0.08 Tw ( ) Tj -393.96 -13.32 TD 0.0012 Tc 5.2688 Tw (experimental results concerning small populations every significant difference in) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0097 Tc 3.1769 Tw (accuracy and efficiency of the crossover conditions compared to the pure mutation) Tj 0 Tc 0.2 Tw ( ) Tj T* -0.0064 Tc 0.2064 Tw (condition was found to be a beneficial effect attributable ) Tj 268.92 0 TD 0.0165 Tc 0.0635 Tw (to ) Tj 12.24 0 TD -0.019 Tc 0.249 Tw (the use of standard ) Tj 91.56 0 TD 0.0082 Tc 0.0718 Tw (crossover, ) Tj -372.72 -13.44 TD 0.0009 Tc -0.0109 Tw (and in all these cases there was a large probability of crossover \(60%\).) Tj 329.16 0 TD 0 Tc -0.04 Tw ( ) Tj -311.76 -13.44 TD ( ) Tj -17.4 -13.68 TD /F1 11.68 Tf 0.06 Tc 0 Tw (6.) Tj 8.76 0 TD /F2 11.68 Tf 0 Tc -0.007 Tw ( ) Tj 8.76 0 TD /F1 11.68 Tf -0.0019 Tc 0 Tw (Conclusion) Tj 55.8 0 TD 0 Tc -0.04 Tw ( ) Tj -73.32 -13.2 TD /F0 11.68 Tf ( ) Tj 0 -13.44 TD -0.0064 Tc 1.4064 Tw (What our work) Tj 0 Tc -0.16 Tw ( ) Tj 77.76 0 TD -0 Tc 0 Tw (indicates) Tj 41.64 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD 0.0018 Tc 1.3982 Tw (is that the) Tj 0 Tc -0.04 Tw ( ) Tj 52.68 0 TD -0.002 Tc 0 Tw (generalizations) Tj 70.68 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0053 Tc 1.4053 Tw (that have been) Tj 0 Tc 0.08 Tw ( ) Tj 74.52 0 TD 0.0033 Tc 1.3967 Tw (published regarding) Tj 0 Tc -0.04 Tw ( ) Tj -325.92 -13.44 TD -0.0052 Tc 0.0337 Tw (the permutation problem cannot be justified and t) Tj 230.64 0 TD 0.0423 Tc -0.0823 Tw (hat ) Tj 17.28 0 TD 0.0011 Tc 0.0309 Tw (it is more appropriate for ) Tj 119.88 0 TD 0.0209 Tc -0.0609 Tw (the issue) Tj 40.56 0 TD 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0165 Tc 0 Tw (to) Tj 9.24 0 TD 0 Tc -0.04 Tw ( ) Tj -420.48 -13.44 TD -0.0105 Tc 1.4105 Tw (be discussed) Tj 0 Tc -0.04 Tw ( ) Tj 64.32 0 TD 0.1365 Tc 0 Tw (in) Tj 9.12 0 TD 0 Tc -0.04 Tw ( ) Tj 4.32 0 TD -0.0061 Tc 1.4061 Tw (terms of) Tj 0 Tc 0.08 Tw ( ) Tj 44.28 0 TD 0.0073 Tc 0.0727 Tw (population ) Tj 54.36 0 TD -0.062 Tc 0 Tw (con) Tj 16.8 0 TD -0.0068 Tc 1.4468 Tw (vergence and genotypic diversity.) Tj 0 Tc -0.04 Tw ( ) Tj 166.08 0 TD -0.009 Tc -0.031 Tw (Accordingly, ) Tj -359.28 -13.44 TD -0.0018 Tc 0.0304 Tw (we proposed the \221convergence argument\222, namely that w) Tj 265.44 0 TD 0.0091 Tc -0.0191 Tw (ithout the use of ) Tj 78.6 0 TD 0.0153 Tc -0.0553 Tw (special diversity ) Tj -344.04 -13.44 TD -0.0184 Tc 1.8984 Tw (preserving mechanisms) Tj 111.6 0 TD 0 Tc -0.04 Tw ( ) Tj 4.68 0 TD 0.04 Tc 0 Tw (p) Tj 5.88 0 TD 0.0049 Tc -0.0449 Tw (opulations ) Tj 53.4 0 TD -0.0157 Tc 0 Tw (wil) Tj 15 0 TD -0.007 Tc -0.033 Tw (l ) Tj 7.92 0 TD -0.0489 Tc -0.2311 Tw (typically ) Tj 45.24 0 TD 0.0025 Tc 1.7575 Tw (converge quickly, and) Tj 0 Tc 0.2 Tw ( ) Tj 111.72 0 TD -0 Tc -0.04 Tw (that ) Tj 22.2 0 TD -0.0316 Tc -0.0084 Tw (after ) Tj 25.92 0 TD 0.0106 Tc -0.0506 Tw (this ) Tj -403.56 -13.44 TD 0.0012 Tc 0.0788 Tw (convergence t) Tj 65.16 0 TD 0.007 Tc -0.047 Tw (he ) Tj 14.04 0 TD -0.0198 Tc 0.1598 Tw (use of ) Tj 31.32 0 TD -0.0115 Tc 0.0915 Tw (standard ) Tj 42.48 0 TD -0.0011 Tc 0.0211 Tw (crossover operators ) Tj 94.32 0 TD -0.08 Tc 0 Tw (do) Tj 11.64 0 TD -0.0047 Tc (es) Tj 9.72 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0139 Tc 0.0939 Tw (not have an) Tj 54 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0165 Tc 0.0965 Tw (adverse effect) Tj 65.04 0 TD -0.0094 Tc 0.0894 Tw (. This ) Tj -393.72 -13.44 TD 0.0047 Tc 0 Tw (is) Tj 7.8 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.0182 Tc -0.0218 Tw (because ) Tj 40.2 0 TD -0.0109 Tc 0.5109 Tw (at that point most genotypes will be) Tj 0 Tc -0.04 Tw ( ) Tj 172.8 0 TD -0.0257 Tc 0.4657 Tw (very similar) Tj 56.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3.36 0 TD -0.022 Tc -0.018 Tw (and ) Tj 20.28 0 TD -0.0143 Tc 0.4843 Tw (it is unlikely that several) Tj 0 Tc -0.04 Tw ( ) Tj -304.08 -13.44 TD 0.0053 Tc -0.0453 Tw (distinct ) Tj 40.2 0 TD -0.036 Tc 0.116 Tw (genetic ) Tj 39.12 0 TD -0.0149 Tc 0 Tw (permut) Tj 33 0 TD 0.0034 Tc 2.6766 Tw (ations of the same) Tj 0 Tc -0.04 Tw ( ) Tj 98.4 0 TD 0.0054 Tc -0.0454 Tw (phenotypic ) Tj 57.6 0 TD 0.0055 Tc 2.6905 Tw (solution will be present in the) Tj 0 Tc 0.08 Tw ( ) Tj -268.32 -13.32 TD 0.0073 Tc 0 Tw (population) Tj 50.04 0 TD 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD -0.0027 Tc 0.5627 Tw (at the same time) Tj 78 0 TD 0.08 Tc 0 Tw (. ) Tj 6.6 0 TD -0.0541 Tc -0.1059 Tw (The ) Tj 21.6 0 TD -0.0017 Tc 0.6337 Tw (series of experiments on benchmark problems) Tj 218.28 0 TD 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0047 Tc 0.2047 Tw (reported ) Tj -381.6 -13.44 TD -0.0104 Tc 2.0237 Tw (in this paper give empirical support to this convergence argument.) Tj 0 Tc -0.04 Tw ( ) Tj 332.04 0 TD -0.0019 Tc 1.9219 Tw (We argue that the) Tj 0 Tc -0.04 Tw ( ) Tj -332.04 -13.44 TD 0.0093 Tc 1.6307 Tw (permutation problem doe) Tj 121.2 0 TD 0.0224 Tc 1.6176 Tw (s not) Tj 0 Tc -0.04 Tw ( ) Tj 28.68 0 TD -0.029 Tc -0.131 Tw (generally ) Tj 47.76 0 TD -0.0018 Tc 1.7618 Tw (appear in) Tj 0 Tc 0.08 Tw ( ) Tj 49.44 0 TD -0.0377 Tc -0.1223 Tw (the ) Tj 18.72 0 TD -0.0095 Tc 1.6495 Tw (practical application of) Tj 0 Tc -0.04 Tw ( ) Tj 115.32 0 TD -0.0212 Tc -0.1388 Tw (artificial ) Tj -381.12 -13.44 TD 0.0037 Tc 0.0763 Tw (evolution ) Tj 48.24 0 TD 0.0009 Tc 1.1591 Tw (to the optimization of) Tj 104.28 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD -0.0206 Tc -0.1394 Tw (ANNs ) Tj 33.96 0 TD -0.0028 Tc 1.1868 Tw (because after a short transient post) Tj 167.04 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.001 Tc -0.039 Tw (initialization ) Tj -361.44 -13.44 TD -0.0254 Tc -0.0146 Tw (phase, the ) Tj 49.56 0 TD 0.0035 Tc 0.0765 Tw (standard ) Tj 42.48 0 TD 0.0078 Tc -0.0135 Tw (crossover operator is applied to a converged population.) Tj 262.2 0 TD 0 Tc -0.04 Tw ( ) Tj -354.24 -13.44 TD ( ) Tj 0 -13.68 TD /F1 11.68 Tf 0.0557 Tc 0 Tw (Ack) Tj 19.92 0 TD -0 Tc (nowledgements) Tj 76.8 0 TD 0 Tc -0.04 Tw ( ) Tj -96.72 -13.2 TD /F0 11.68 Tf ( ) Tj 0 -13.44 TD -0.0141 Tc -0.0259 Tw (The ) Tj 23.28 0 TD 0.007 Tc 2.193 Tw (authors would like to thank Inman Harvey) Tj 211.08 0 TD -0.04 Tc 0 Tw (,) Tj 3 0 TD 0 Tc -0.04 Tw ( ) Tj 5.28 0 TD -0 Tc 2.2402 Tw (Lionel Barnett,) Tj 72.84 0 TD 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD -0.0044 Tc 2.2444 Tw (Nathaniel Virgo) Tj 0 Tc 0.08 Tw ( ) Tj 82.92 0 TD 0.018 Tc 0.182 Tw (and ) Tj -403.56 -13.44 TD -0.015 Tc 0.035 Tw (Simon McGregor ) Tj 84.96 0 TD 0.0028 Tc -0.0428 Tw (for their helpful ) Tj 76.8 0 TD 0.0034 Tc 0.0166 Tw (comments and ) Tj 70.68 0 TD 0.0122 Tc -0.0522 Tw (discussions. ) Tj 59.16 0 TD 0 Tc -0.04 Tw ( ) Tj -291.6 -13.44 TD ( ) Tj 0 -13.68 TD /F1 11.68 Tf -0.0116 Tc 0 Tw (References) Tj 54.48 0 TD 0 Tc -0.04 Tw ( ) Tj -54.48 -13.2 TD /F0 11.68 Tf ( ) Tj 0 -13.44 TD -0.0026 Tc 1.4135 Tw (Abass, H. A. \(2002\). An Evolutionary Artificial Neural Networks Approach for Breast) Tj 0 Tc -0.04 Tw ( ) Tj 17.4 -13.44 TD -0.0024 Tc -0.0376 Tw (Cancer Diagnosis. ) Tj 88.56 0 TD /F3 11.68 Tf -0.0157 Tc 0 Tw (Art) Tj 14.88 0 TD 0.0058 Tc -0.0058 Tw (ificial Intelligence in Medicine) Tj 143.76 0 TD /F0 11.68 Tf -0.04 Tc 0 Tw (, ) Tj 5.76 0 TD /F3 11.68 Tf 0.04 Tc (25) Tj 11.76 0 TD /F0 11.68 Tf 0.003 Tc -0.043 Tw (\(3\), 265) Tj 36.84 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.01 Tc (281.) Tj 20.64 0 TD 0 Tc -0.04 Tw ( ) Tj -343.44 -13.32 TD ( ) Tj 0 -13.44 TD -0.0068 Tc 0.0388 Tw (Angeline, P. J., Saunders, G. M., & Pollack, J. B. \(1994\). An Evolutionary Algorithm that ) Tj 17.4 -13.44 TD -0.0073 Tc -0.0027 Tw (constructs Recurrent Neural Networks. ) Tj 185.16 0 TD /F3 11.68 Tf -0.0082 Tc 0.0282 Tw (IEEE Trans. on Neural Networks) Tj 155.4 0 TD /F0 11.68 Tf 0.08 Tc 0 Tw (, ) Tj 5.88 0 TD /F3 11.68 Tf 0.04 Tc (5) Tj 5.88 0 TD /F0 11.68 Tf -0.0031 Tc -0.0369 Tw (\(1\), 54) Tj 31.08 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0133 Tc (65.) Tj 14.64 0 TD 0 Tc -0.04 Tw ( ) Tj -419.28 -13.44 TD ( ) Tj 0 -13.44 TD 0.001 Tc 2.335 Tw (Aso, H., & Muehlenbein, H. \(199) Tj 168.72 0 TD -0.0062 Tc 2.3662 Tw (4\). On the mean convergence time of evolutionary) Tj 0 Tc -0.16 Tw ( ) Tj -151.32 -13.44 TD -0.0101 Tc 2.7501 Tw (algorithms without selection and mutation. In H.) Tj 243.24 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0042 Tc 2.6762 Tw (P. Schwefel, Y. Davidor, & R.) Tj 0 Tc -0.16 Tw ( ) Tj -247.08 -13.44 TD 0.0565 Tc 0 Tw (M) Tj 10.32 0 TD 0.0033 Tc 4.1567 Tw (\344nner \(Eds.\),) Tj 0 Tc -0.04 Tw ( ) Tj 71.28 0 TD /F3 11.68 Tf 0.0008 Tc 4.2072 Tw (Parallel Problem Solving from Nature III) Tj 215.4 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 7.2 0 TD -0.0482 Tc 4.3282 Tw (\(pp. 88) Tj 37.32 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0081 Tc 4.1681 Tw (97\), Berlin,) Tj 0 Tc -0.16 Tw ( ) Tj -345.48 -13.44 TD -0.0334 Tc 0.2334 Tw (Germany: Springer) Tj 89.88 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0716 Tc (Verlag.) Tj 34.68 0 TD 0 Tc -0.04 Tw ( ) Tj -145.8 -13.44 TD ( ) Tj 0 -13.44 TD -0.0322 Tc 1.3122 Tw (Barnett, L.) Tj 0 Tc -0.04 Tw ( ) Tj 55.32 0 TD 0.003 Tc 0.077 Tw (\(2001\). ) Tj 38.16 0 TD -0.023 Tc 0 Tw (Netc) Tj 22.08 0 TD -0.0061 Tc -0.1539 Tw (rawling ) Tj 39.72 0 TD 0.04 Tc 0 Tw (\226) Tj 5.76 0 TD 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD -0.0077 Tc 1.1917 Tw (Optimal Evolutionary Search with Neutral Networks.) Tj 0 Tc 0.08 Tw ( ) Tj -147.72 -13.44 TD -0.0382 Tc 0.8382 Tw (In J.) Tj 20.76 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0038 Tc 0.8638 Tw (H. Kim, B.) Tj 53.28 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0199 Tc 0.8885 Tw (T. Zhang, G. Fogel, & I. Kuscu \(Eds.\),) Tj 0 Tc -0.04 Tw ( ) Tj 190.2 0 TD /F3 11.68 Tf 0.0235 Tc 0 Tw (Proc) Tj 22.68 0 TD -0.04 Tc (.) Tj 2.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0075 Tc 0.8075 Tw (of the 2001 Congress) Tj 0 Tc -0.16 Tw ( ) Tj -301.2 -13.44 TD -0.0047 Tc 0.0247 Tw (on Evolutionary Computation) Tj 139.56 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0482 Tc 0.1282 Tw (\(pp. 30) Tj 33 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0092 Tc 0.0292 Tw (37\), Piscataway, NJ: IEEE Press.) Tj 154.8 0 TD 0 Tc -0.04 Tw ( ) Tj -351.6 -13.44 TD ( ) Tj ET endstream endobj 103 0 obj 11545 endobj 101 0 obj << /Type /Page /Parent 89 0 R /Resources << /Font << /F0 6 0 R /F1 19 0 R /F2 22 0 R /F3 36 0 R >> /ProcSet 2 0 R >> /Contents 102 0 R >> endobj 105 0 obj << /Length 106 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (17) Tj ET Q BT 88.08 725.04 TD /F0 11.68 Tf -0.0128 Tc 0.1928 Tw (Belew, R. K., McInerney, J., & Schraudolph) Tj 208.44 0 TD 0.0011 Tc 0.1089 Tw (, N. N. \(1992\). Evolving networks: Using the ) Tj -191.04 -13.44 TD -0.0115 Tc 2.3615 Tw (genetic algorithm with connectionist learning. In C. G. Langton, C. Taylor, J. D.) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.32 TD -0.0051 Tc 0.8351 Tw (Farmer, & S. Rasmussen \(Eds.\),) Tj 0 Tc -0.04 Tw ( ) Tj 157.44 0 TD /F3 11.68 Tf -0.0138 Tc 0.9338 Tw (Artificial Life II) Tj 75.6 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD -0.0185 Tc 0.8185 Tw (\(pp. 511) Tj 39.72 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0127 Tc 0.8927 Tw (547\), Redwood City, CA:) Tj 0 Tc -0.04 Tw ( ) Tj -280.32 -13.44 TD -0.0148 Tc 0 Tw (Addison) Tj 39.6 0 TD -0.0494 Tc (-) Tj 4.08 0 TD -0.0726 Tc (Wesley.) Tj 37.68 0 TD 0 Tc -0.04 Tw ( ) Tj -98.76 -13.44 TD ( ) Tj 0 -13.44 TD -0.0018 Tc 1.3118 Tw (Ebner, M., Langguth, P., Albe) Tj 146.52 0 TD -0.0125 Tc 1.3192 Tw (rt, J., Shackleton, M., & Shipman, R. \(2001\). On neutral) Tj 0 Tc -0.04 Tw ( ) Tj -129.12 -13.44 TD -0.0138 Tc 1.2938 Tw (networks and evolvability.) Tj 0 Tc 0.08 Tw ( ) Tj 130.68 0 TD -0.0082 Tc 1.1682 Tw (In J.) Tj 21.24 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0038 Tc 1.2238 Tw (H. Kim, B.) Tj 54 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0083 Tc 1.254 Tw (T. Zhang, G. Fogel, & I. Kuscu \(Eds.\),) Tj 0 Tc -0.04 Tw ( ) Tj -213.6 -13.44 TD /F3 11.68 Tf 0.0087 Tc 0.6713 Tw (Proc. of the 2001 Congress on Evolutionary Computation) Tj 275.88 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.6 0 TD -0.0024 Tc 0.6824 Tw (\(pp. ) Tj 0.64 Tc 0 Tw (1) Tj 27.96 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0082 Tc 0.7318 Tw (8\), Piscataway, NJ:) Tj 0 Tc -0.04 Tw ( ) Tj -311.28 -13.44 TD -0.0195 Tc 0.0995 Tw (IEEE Press.) Tj 55.8 0 TD 0 Tc -0.04 Tw ( ) Tj -73.2 -13.44 TD ( ) Tj 0 -13.44 TD -0.0183 Tc 1.3383 Tw (Fogel, D. B., Wasson,) Tj 106.92 0 TD 0 Tc -0.04 Tw ( ) Tj 4.2 0 TD -0.0094 Tc 1.2894 Tw (E. C.,) Tj 0 Tc -0.04 Tw ( ) Tj 32.04 0 TD -0.087 Tc 0.047 Tw (& ) Tj 13.2 0 TD -0.0108 Tc 1.3308 Tw (Boughton, E. M. \(1995\).) Tj 0 Tc -0.04 Tw ( ) Tj 123.12 0 TD -0.0023 Tc 1.2823 Tw (Evolving neural networks for) Tj 0 Tc 0.08 Tw ( ) Tj -262.08 -13.44 TD -0.0138 Tc 0.0538 Tw (detecting breast cancer. ) Tj 112.8 0 TD /F3 11.68 Tf -0.0179 Tc 0.0979 Tw (Cancer Letters) Tj 69.6 0 TD /F0 11.68 Tf 0.08 Tc 0 Tw (, ) Tj 5.88 0 TD /F3 11.68 Tf 0.04 Tc (96) Tj 11.76 0 TD /F0 11.68 Tf 0.0169 Tc -0.0569 Tw (\(1\), 49) Tj 31.2 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0533 Tc (53.) Tj 14.64 0 TD 0 Tc -0.04 Tw ( ) Tj -267.12 -13.44 TD ( ) Tj 0 -13.44 TD -0.0279 Tc 0 Tw (Garc\355a) Tj 31.08 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.0066 Tc 3.2534 Tw (Pedrajas, N., Ortiz) Tj 93.24 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.011 Tc 3.269 Tw (Boyer, D., & Herv\341s) Tj 106.56 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0119 Tc 3.2719 Tw (Mart\355nez, C. \(2006\).) Tj 0 Tc -0.04 Tw ( ) Tj 108.36 0 TD 0.002 Tc 3.198 Tw (An alternative) Tj 0 Tc 0.08 Tw ( ) Tj -333.36 -13.44 TD -0.02 Tc 3.97 Tw (approach for neural network evolution with a genetic ) Tj 3.9341 Tc 0 Tw (a) Tj 286.92 0 TD 0.0036 Tc 3.8564 Tw (lgorithm: Crossover by) Tj 0 Tc -0.04 Tw ( ) Tj -286.92 -13.44 TD -0.0052 Tc 0.0252 Tw (combinatorial optimization. ) Tj 132.72 0 TD /F3 11.68 Tf -0.001 Tc 0.081 Tw (Neural Networks) Tj 79.56 0 TD /F0 11.68 Tf -0.04 Tc 0 Tw (, ) Tj 5.76 0 TD /F3 11.68 Tf 0.04 Tc (19) Tj 11.76 0 TD /F0 11.68 Tf 0.003 Tc -0.043 Tw (\(4\), 514) Tj 36.84 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.01 Tc (528.) Tj 20.64 0 TD 0 Tc -0.04 Tw ( ) Tj -308.52 -13.44 TD ( ) Tj 0 -13.32 TD 0.0034 Tc 0.012 Tw (Hancock, P. J. B. \(1992\). Genetic Algorithms and permutation problems: a comparison of ) Tj 17.4 -13.44 TD -0.0143 Tc 0.8034 Tw (recombination operators for neural net structure specification. In D. L. Whitley, &) Tj 0 Tc -0.04 Tw ( ) Tj 395.64 0 TD -0.0118 Tc -0.0282 Tw (J. ) Tj -395.64 -13.44 TD -0.0125 Tc 0.8125 Tw (D. Schaffer \(Eds.\),) Tj 0 Tc 0.08 Tw ( ) Tj 92.88 0 TD /F3 11.68 Tf 0.0015 Tc 0.7235 Tw (Proc. Int. Workshop on Combinations of Genetic Algorithms and) Tj 0 Tc -0.04 Tw ( ) Tj -92.88 -13.44 TD 0.0076 Tc -0.0476 Tw (Neural Networks) Tj 79.56 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0158 Tc -0.0558 Tw (\(pp. 108) Tj 38.88 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0052 Tc 0.0252 Tw (122\), Los Alamitos, CA: IEEE Computer Society.) Tj 234.72 0 TD 0 Tc -0.04 Tw ( ) Tj -377.28 -13.44 TD ( ) Tj 0 -13.44 TD 0.0009 Tc 2.2391 Tw (Harvey, I. \(1992\). Species Adaptation Genetic Algorithms: A Basis for a Continuing) Tj 0 Tc -0.04 Tw ( ) Tj 17.4 -13.44 TD -0.0218 Tc 0.1618 Tw (SAGA. In F. J. ) Tj 73.44 0 TD -0.008 Tc 0.136 Tw (Varela, & P. Bourgine \(Eds.\), ) Tj 142.44 0 TD /F3 11.68 Tf 0.0231 Tc 0.0969 Tw (Proc. of the 1) Tj 63.96 5.4 TD /F3 7.8256 Tf -0.0298 Tc 0 Tw (st) Tj 5.16 -5.4 TD /F3 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3 0 TD 0.0025 Tc 0.0775 Tw (Euro. Conf. on Artificial ) Tj -288 -13.44 TD -0.0135 Tc 0 Tw (Life) Tj 18.12 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0158 Tc -0.0558 Tw (\(pp. 346) Tj 38.88 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0042 Tc 0.0602 Tw (354\), Cambridge, MA: The MIT Press.) Tj 183.24 0 TD 0 Tc -0.04 Tw ( ) Tj -264.36 -13.44 TD ( ) Tj 0 -13.44 TD -0.0102 Tc 0.8702 Tw (Harvey, I. \(1996\).) Tj 0 Tc 0.08 Tw ( ) Tj 89.28 0 TD /F3 11.68 Tf -0.0035 Tc 0.8035 Tw (The Microbial Genetic Algorithm) Tj 159 0 TD /F0 11.68 Tf 0.08 Tc 0 Tw (. ) Tj 6.72 0 TD -0.0068 Tc 0.8308 Tw (Retrieved Sept. 17, 2007, from the) Tj 0 Tc 0.08 Tw ( ) Tj -237.6 -13.44 TD -0.0115 Tc 9.8355 Tw (I. Harvey\222s 亚洲情色, Department) Tj 0 Tc -0.04 Tw ( ) Tj 275.16 0 TD -0.0068 Tc 9.8668 Tw (of Informatics website:) Tj 0 Tc -0.04 Tw ( ) Tj -275.16 -13.44 TD 0 0 1 rg -0.0094 Tc 0 Tw (http://www.cogs.sussex.ac.uk/users/inmanh/) Tj ET 105.48 347.16 207.6 0.6 re f BT 313.08 348.96 TD 0 0 0 rg 0 Tc -0.04 Tw ( ) Tj -225 -13.44 TD ( ) Tj 0 -13.44 TD 0.0016 Tc 4.4747 Tw (Harvey. I. \(2001\). Artificial Evolution: A Continuing SAGA. In T. Gomi \(Ed.\),) Tj 0 Tc 0.08 Tw ( ) Tj 17.4 -13.44 TD /F3 11.68 Tf 0 Tc 0.1397 Tw (Evolutionary Robotics: From Intelligent Robots to ) Tj 239.88 0 TD -0 Tc 0.2002 Tw (Artificial Life) Tj 63.48 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.12 0 TD 0.0118 Tc 0.1882 Tw (\(pp. 94) Tj 33.24 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0141 Tc 0.0341 Tw (109\), Berlin, ) Tj -343.68 -13.32 TD -0.0334 Tc 0.2334 Tw (Germany: Springer) Tj 89.88 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0716 Tc (Verlag.) Tj 34.68 0 TD 0 Tc -0.04 Tw ( ) Tj -145.8 -13.44 TD ( ) Tj 0 -13.44 TD -0.0026 Tc 2.1411 Tw (Harvey, I., & Thompson, A. \(1996\). Through the labyrinth evolution finds a way: A) Tj 0 Tc 0.08 Tw ( ) Tj 17.4 -13.44 TD -0.0042 Tc 0.6242 Tw (silicon ridge. In T. Higuchi, M. Iwata, & L. Weixin \(Eds.\),) Tj 0 Tc -0.04 Tw ( ) Tj 283.92 0 TD /F3 11.68 Tf -0.0266 Tc 0.7066 Tw (Proc. of the ) Tj 0.64 Tc 0 Tw (1) Tj 65.4 5.28 TD /F3 7.8256 Tf 0.0902 Tc (st) Tj 5.16 -5.28 TD /F3 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.48 0 TD 0.0118 Tc 0.5482 Tw (Int. Conf.) Tj 0 Tc -0.04 Tw ( ) Tj -357.96 -13.44 TD -0.0048 Tc 0.0248 Tw (on Evolvable Systems) Tj 101.16 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD 0.0329 Tc -0.0729 Tw (\(pp. 406) Tj 39 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0037 Tc 0.0037 Tw (422\), Berlin, Germany: Springer) Tj 152.16 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.003 Tc (Verlag.) Tj 34.8 0 TD 0 Tc -0.04 Tw ( ) Tj -355.2 -13.44 TD ( ) Tj 0 -13.44 TD -0.0264 Tc 0 Tw (Izquierdo) Tj 44.64 0 TD -0.0494 Tc (-) Tj 3.96 0 TD 0.0066 Tc 1.2934 Tw (Torres, E. \(2004\). The Role of Nearly Neutral Mutations in the Evolution of) Tj 0 Tc -0.04 Tw ( ) Tj -31.2 -13.44 TD -0.0034 Tc 0.2377 Tw (Dynamical Neural Networks. In J. Pollack, M. Bedau, P. Husbands, T. Ikegami, & R. ) Tj 0 -13.44 TD -0.0078 Tc 1.1678 Tw (Watson \(Eds.\),) Tj 0 Tc -0.04 Tw ( ) Tj 74.88 0 TD /F3 11.68 Tf 0.0094 Tc 1.1906 Tw (Proc. of the ) Tj 1.12 Tc 0 Tw (9) Tj 67.32 5.4 TD /F3 7.8256 Tf -0.1642 Tc (th) Tj 6 -5.4 TD /F3 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 4.08 0 TD 0.0159 Tc 1.1441 Tw (Int. ) Tj 1.2094 Tc 0 Tw (C) Tj 27.84 0 TD 0.0011 Tc 1.1589 Tw (onf. on the Simulation and Synthesis of Living) Tj 0 Tc 0.08 Tw ( ) Tj -180.12 -13.44 TD -0.0027 Tc 0 Tw (Systems) Tj 36.96 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0185 Tc -0.0215 Tw (\(pp. 322) Tj 38.88 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0 Tc 0.0802 Tw (327\), Cambridge MA: MIT Press) Tj 156.24 0 TD 0 Tc -0.04 Tw ( ) Tj -256.2 -13.44 TD ( ) Tj 0 -13.44 TD -0.0253 Tc 3.9453 Tw (Kimura, M. \(1983\).) Tj 0 Tc -0.04 Tw ( ) Tj 106.08 0 TD /F3 11.68 Tf -0.0098 Tc 3.8578 Tw (The Neutral Theory of Molecular Evolution) Tj 223.08 0 TD /F0 11.68 Tf -0.0156 Tc 3.9356 Tw (. Cambridge, UK:) Tj 0 Tc 0.08 Tw ( ) Tj -311.76 -13.44 TD -0.009 Tc 0.089 Tw (Cambridge Uni. Press) Tj 102.96 0 TD 0 Tc -0.04 Tw ( ) Tj -120.36 -13.44 TD ( ) Tj ET endstream endobj 106 0 obj 9829 endobj 104 0 obj << /Type /Page /Parent 89 0 R /Resources << /Font << /F0 6 0 R /F3 36 0 R >> /ProcSet 2 0 R >> /Contents 105 0 R >> endobj 108 0 obj << /Length 109 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (18) Tj ET Q BT 88.08 725.04 TD /F0 11.68 Tf 0.0018 Tc 0.6116 Tw (Montana, D. J., & Davis, L. \(1989\). Training feedforward neura) Tj 304.56 0 TD 0.012 Tc 0.588 Tw (l networks using genetic) Tj 0 Tc 0.08 Tw ( ) Tj -287.16 -13.44 TD -0.0079 Tc -0.0321 Tw (algorithms. ) Tj 56.52 0 TD /F3 11.68 Tf 0.0145 Tc 0.8655 Tw (Proc. of the 11) Tj 72.24 5.4 TD /F3 7.8256 Tf -0.1642 Tc 0 Tw (th) Tj 6 -5.4 TD /F3 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.72 0 TD 0.0104 Tc 0.7896 Tw (Int. Joint Conf.) Tj 0 Tc -0.04 Tw ( ) Tj 76.2 0 TD 0.0029 Tc 0.8571 Tw (on Artificial Intelligence) Tj 116.52 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0013 Tc 0.9213 Tw (\(pp. 762) Tj 39.72 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD 0.0061 Tc 0.0739 Tw (767\), ) Tj -378.72 -13.32 TD -0.0027 Tc 0.0227 Tw (San Mateo, CA: Morgan Kaufmann.) Tj 170.64 0 TD 0 Tc -0.04 Tw ( ) Tj -188.04 -13.44 TD ( ) Tj 0 -13.44 TD 0.0235 Tc 0 Tw (Ortiz) Tj 24 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0064 Tc 0.0264 Tw (Boyer, D., Herv\341s) Tj 84.72 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0026 Tc 0.0426 Tw (Mart\355nez, C., & Garc\355a) Tj 107.76 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD -0.0035 Tc 0.0035 Tw (Pedrajas, N. \(2005\). ) Tj 96.72 0 TD 0.007 Tc -0.007 Tw (CIXL2: A crossover ) Tj -307.56 -13.44 TD -0.0032 Tc 4.7032 Tw (operator for evolution) Tj 111.84 0 TD -0.0075 Tc 4.6715 Tw (ary algorithms based on population features.) Tj 0 Tc -0.04 Tw ( ) Tj 238.2 0 TD /F3 11.68 Tf 0.0063 Tc 4.6337 Tw (Journal of) Tj 0 Tc -0.04 Tw ( ) Tj -350.04 -13.44 TD -0.005 Tc 0.025 Tw (Artificial Intelligence Research) Tj 146.64 0 TD /F0 11.68 Tf -0.04 Tc 0 Tw (, ) Tj 5.76 0 TD /F3 11.68 Tf 0.04 Tc (24) Tj 11.76 0 TD /F0 11.68 Tf -0.06 Tc 0.02 Tw (, 1) Tj 11.64 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0267 Tc (48.) Tj 14.76 0 TD 0 Tc -0.04 Tw ( ) Tj -211.8 -13.44 TD ( ) Tj 0 -13.44 TD -0.0128 Tc 3.0928 Tw (Prechelt, L. \(1994\).) Tj 0 Tc -0.04 Tw ( ) Tj 103.08 0 TD /F3 11.68 Tf -0.0037 Tc -0.0363 Tw (Proben1 ) Tj 46.2 0 TD 0.04 Tc 0 Tw (\226) Tj 5.88 0 TD 0 Tc -0.04 Tw ( ) Tj 5.88 0 TD -0.0053 Tc 3.0339 Tw (A Set of Neural Network Benchmark Problems and) Tj 0 Tc -0.04 Tw ( ) Tj -143.64 -13.44 TD -0.0065 Tc -0.0335 Tw (Benchmarking Rules) Tj 96.84 0 TD /F0 11.68 Tf 0.001 Tc 0.0275 Tw (. Karlsruhe, Germany: Universt\344t Karlsruhe \(Tech. Report 21) Tj 287.52 0 TD -0.0447 Tc 0 Tw (\).) Tj 6.84 0 TD 0 Tc -0.04 Tw ( ) Tj -408.6 -13.44 TD ( ) Tj 0 -13.44 TD 0.04 Tc 0 Tw (v) Tj 5.88 0 TD -0.0008 Tc 2.8288 Tw (an Nimwegen, E., & Crutchfield, J. P. \(2000\). Metastable Evolutionary Dynamics:) Tj 0 Tc -0.04 Tw ( ) Tj 11.52 -13.44 TD 0.0016 Tc 1.8784 Tw (Crossing Fitness Barriers or Escaping via Neutral Paths?) Tj 0 Tc -0.04 Tw ( ) Tj 283.08 0 TD /F3 11.68 Tf 0.0043 Tc 1.8757 Tw (Bulletin of Mathemetical) Tj 0 Tc -0.04 Tw ( ) Tj -283.08 -13.44 TD 0.0205 Tc 0 Tw (Biology) Tj 36.36 0 TD /F0 11.68 Tf -0.04 Tc (, ) Tj 5.76 0 TD /F3 11.68 Tf 0.04 Tc (65) Tj 11.76 0 TD /F0 11.68 Tf 0.003 Tc -0.043 Tw (\(5\), 799) Tj 36.84 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.01 Tc (848.) Tj 20.64 0 TD 0 Tc -0.04 Tw ( ) Tj -132.6 -13.44 TD ( ) Tj 0 -13.44 TD 0.0049 Tc 2.7951 Tw (Radcliffe, N. J. \(1990\).) Tj 0 Tc 0.08 Tw ( ) Tj 122.28 0 TD /F3 11.68 Tf 0.0071 Tc 2.7849 Tw (Genetic neural networks on MIMD comput) Tj 215.64 0 TD 0.0023 Tc 0 Tw (ers) Tj 14.4 0 TD /F0 11.68 Tf -0.018 Tc 2.858 Tw (. Unpublished) Tj 0 Tc -0.04 Tw ( ) Tj -334.92 -13.44 TD -0.0062 Tc 0.0262 Tw (D.Phil. thesis. University of Edinburgh, Edinburg, Scotland.) Tj 281.64 0 TD 0 Tc -0.04 Tw ( ) Tj -299.04 -13.32 TD ( ) Tj 0 -13.44 TD -0.0036 Tc 1.1136 Tw (Radcliffe, N. J. \(1993\). Genetic set recombination and its application to neural network) Tj 0 Tc 0.08 Tw ( ) Tj 17.4 -13.44 TD -0.0012 Tc -0.0388 Tw (topology optimisation. ) Tj 108.6 0 TD /F3 11.68 Tf 0.0074 Tc -0.0074 Tw (Neural Computing and Applications) Tj 169.8 0 TD /F0 11.68 Tf 0.08 Tc 0 Tw (, ) Tj 5.88 0 TD /F3 11.68 Tf 0.04 Tc (1) Tj 5.88 0 TD /F0 11.68 Tf -0.0031 Tc -0.0369 Tw (\(1\), 67) Tj 31.08 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0267 Tc (90.) Tj 14.64 0 TD 0 Tc -0.04 Tw ( ) Tj -357.12 -13.44 TD ( ) Tj 0 -13.44 TD -0.0098 Tc 0.9298 Tw (Schaffer, J. D.,) Tj 71.88 0 TD 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0161 Tc 0.9361 Tw (& Morishima, A. \(1987\).) Tj 0 Tc -0.04 Tw ( ) Tj 123.72 0 TD 0 Tc 0.9198 Tw (An adaptive crossover distribution mechanism) Tj 0 Tc 0.08 Tw ( ) Tj -182.04 -13.44 TD -0.0056 Tc 2.7427 Tw (for genetic algorithms. In J. J. Grefenstette \(Ed.\),) Tj 0 Tc -0.04 Tw ( ) Tj 253.56 0 TD /F3 11.68 Tf -0.0146 Tc 2.7346 Tw (Proc. of the ) Tj 2.68 Tc 0 Tw (2) Tj 71.64 5.4 TD /F3 7.8256 Tf 0.0472 Tc (nd) Tj 7.92 -5.4 TD /F3 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD -0.0158 Tc 2.7358 Tw (Int. Conf. on) Tj 0 Tc -0.04 Tw ( ) Tj -338.76 -13.44 TD 0.0011 Tc 2.2089 Tw (Genetic Algorithms and their application) Tj 201.72 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 5.16 0 TD 0.0118 Tc 2.2282 Tw (\(pp. 36) Tj 35.4 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.0023 Tc 2.2377 Tw (40\), Cambridge, MA: Lawrence) Tj 0 Tc 0.08 Tw ( ) Tj -246.12 -13.44 TD -0.0123 Tc 0.0923 Tw (Erlbaum Associates.) Tj 96 0 TD 0 Tc -0.04 Tw ( ) Tj -113.4 -13.44 TD ( ) Tj 0 -13.44 TD -0.12 Tc 0 Tw (Sch) Tj 17.4 0 TD -0.0176 Tc 2.7736 Tw (affer, J. D., Whitley, D. L., & Eshelman, L. J. \(1992\).) Tj 0 Tc 0.08 Tw ( ) Tj 282.72 0 TD -0.0024 Tc 2.7824 Tw (Combinations of genetic) Tj 0 Tc -0.04 Tw ( ) Tj -282.72 -13.44 TD -0.0128 Tc 0.1795 Tw (algorithms and neural networks: a survey of the state of the art. In D. L. Whitley, & J. ) Tj 0 -13.44 TD -0.0125 Tc 0.8125 Tw (D. Schaffer \(Eds.\),) Tj 0 Tc 0.08 Tw ( ) Tj 92.88 0 TD /F3 11.68 Tf 0.0015 Tc 0.7235 Tw (Proc. Int. Workshop on Combinations of Genetic Algorithms and) Tj 0 Tc -0.04 Tw ( ) Tj -92.88 -13.44 TD 0.016 Tc 0 Tw (Neura) Tj 29.16 0 TD 0.0162 Tc -0.0562 Tw (l Networks) Tj 50.4 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 2.88 0 TD -0.0179 Tc -0.0221 Tw (\(pp. 1) Tj 27.24 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0156 Tc 0.0756 Tw (37\). Los Alamitos, CA: IEEE Computer Society.) Tj 228.72 0 TD 0 Tc -0.04 Tw ( ) Tj -359.64 -13.44 TD ( ) Tj 0 -13.44 TD -0.0141 Tc 0 Tw (S) Tj 6.48 0 TD -0.0101 Tc 3.9201 Tw (hipman, R., Shackleton, M., & Harvey, I. \(2000\). The use of neutral genotype) Tj 409.92 0 TD -0.0494 Tc 0 Tw (-) Tj -399 -13.32 TD 0.0012 Tc 3.4868 Tw (phenotype mappings for improved evolutionary search.) Tj 0 Tc -0.04 Tw ( ) Tj 282.72 0 TD /F3 11.68 Tf -0.0161 Tc 3.6361 Tw (BT Technology Journal) Tj 117.48 0 TD /F0 11.68 Tf -0.04 Tc 0 Tw (, ) Tj -400.2 -13.44 TD /F3 11.68 Tf 0.04 Tc (18) Tj 11.64 0 TD /F0 11.68 Tf 0.0053 Tc 0.0747 Tw (\(4\), ) Tj 19.44 0 TD -0.04 Tc 0 Tw (103) Tj 17.52 0 TD -0.0494 Tc (-) Tj 3.84 0 TD 0.02 Tc (111.) Tj 20.52 0 TD 0 Tc -0.04 Tw ( ) Tj -90.36 -13.44 TD ( ) Tj 0 -13.44 TD -0.0088 Tc 2.6088 Tw (Smith, T., Husbands,) Tj 103.68 0 TD 0 Tc -0.04 Tw ( ) Tj 5.64 0 TD -0.0115 Tc 2.6782 Tw (P., Layzell, P., & O\222Shea, M. \(2002\). Fitness Landscapes and) Tj 0 Tc 0.2 Tw ( ) Tj -91.92 -13.44 TD -0.0152 Tc -0.0248 Tw (Evolvability. ) Tj 63.6 0 TD /F3 11.68 Tf -0.0034 Tc -0.0366 Tw (Evolutionary Computation) Tj 124.92 0 TD /F0 11.68 Tf -0.04 Tc 0 Tw (, ) Tj 5.88 0 TD /F3 11.68 Tf -0.08 Tc (10) Tj 11.64 0 TD /F0 11.68 Tf -0.0118 Tc 0.0918 Tw (\(1\), 1) Tj 25.2 0 TD -0.0494 Tc 0 Tw (-) Tj 3.96 0 TD 0.0533 Tc (34.) Tj 14.64 0 TD 0 Tc -0.04 Tw ( ) Tj -267.24 -13.44 TD ( ) Tj 0 -13.44 TD -0.0118 Tc 5.7718 Tw (Stanley, K. O., & Miikkulainen, R. \(2002\).) Tj 0 Tc 0.08 Tw ( ) Tj 243.6 0 TD -0.0074 Tc 5.7274 Tw (Evolving neural networks through) Tj 0 Tc 0.08 Tw ( ) Tj -226.2 -13.44 TD -0.0087 Tc 0.0287 Tw (augmenting topologies. ) Tj 112.56 0 TD /F3 11.68 Tf -0.0086 Tc 0.0886 Tw (Evolutionary Computation) Tj 124.92 0 TD /F0 11.68 Tf -0.04 Tc 0 Tw (, ) Tj 5.88 0 TD /F3 11.68 Tf -0.08 Tc (10) Tj 11.64 0 TD /F0 11.68 Tf -0.0031 Tc -0.0369 Tw (\(2\), 99) Tj 31.08 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.02 Tc (127.) Tj 20.52 0 TD 0 Tc -0.04 Tw ( ) Tj -327.84 -13.44 TD ( ) Tj 0 -13.44 TD -0.0054 Tc 1.4054 Tw (Thierens, D. \(1996\). Non) Tj 122.16 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0024 Tc 1.4024 Tw (Redundant Genetic Coding of Neural Networks.) Tj 0 Tc -0.04 Tw ( ) Tj 237 0 TD /F3 11.68 Tf -0.0146 Tc 1.4146 Tw (Proc. of the) Tj 0 Tc -0.16 Tw ( ) Tj -345.6 -13.44 TD 0.01 Tc 0.07 Tw (1996 ) Tj 27.24 0 TD -0.0029 Tc 0.9229 Tw (IEEE Int. Conf. on Evolutionary Computation) Tj 219.6 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.84 0 TD -0.0013 Tc 0.9213 Tw (\(pp. 571) Tj 39.84 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0166 Tc 0.9966 Tw (575\), Cambridge, MA:) Tj 0 Tc -0.04 Tw ( ) Tj -294.36 -13.44 TD -0.0157 Tc 0.0357 Tw (The MIT Press.) Tj 72.96 0 TD 0 Tc -0.04 Tw ( ) Tj -90.36 -13.44 TD ( ) Tj ET endstream endobj 109 0 obj 9631 endobj 107 0 obj << /Type /Page /Parent 89 0 R /Resources << /Font << /F0 6 0 R /F3 36 0 R >> /ProcSet 2 0 R >> /Contents 108 0 R >> endobj 112 0 obj << /Length 113 0 R >> stream BT 88.08 762.6 TD 0 0 0 rg /F0 9.6944 Tf 0.0185 Tc 0.0179 Tw (Convergence and crossover) Tj 107.52 0 TD 0 Tc -0.0236 Tw ( ) Tj 102.72 0 TD ( ) Tj -210.24 -679.56 TD 0.0122 Tc 0.0842 Tw (Froese and Spier) Tj 65.4 0 TD 0 Tc -0.0236 Tw ( ) Tj -65.4 -11.16 TD ( ) Tj 210.24 0 TD ( ) Tj 210.24 0 TD ( ) Tj ET q 496.92 757.92 11.64 13.2 re h W n BT 496.92 760.68 TD /F0 11.68 Tf -0.08 Tc 0 Tw (19) Tj ET Q BT 88.08 725.04 TD /F0 11.68 Tf -0.0074 Tc 3.6514 Tw (Thierens, D., Suykens, J., Vandewalle, J., & Moor, B. D. \(1993\).) Tj 0 Tc 0.08 Tw ( ) Tj 345.96 0 TD 0.0118 Tc 3.5482 Tw (Genetic weig) Tj 65.4 0 TD 0.0165 Tc -0.0565 Tw (ht ) Tj -393.96 -13.44 TD 0.0034 Tc 1.7766 Tw (optimization of a feedforward neural network controller. In R. F. Albrechts, C. R.) Tj 0 Tc -0.16 Tw ( ) Tj 0 -13.32 TD -0.0059 Tc 0.2459 Tw (Reeves, & N. C. Steel \(Eds.\), ) Tj 141.24 0 TD /F3 11.68 Tf 0.0026 Tc 0.1774 Tw (Artificial Neural Networks and Genetic Algorithms ) Tj 243.48 0 TD /F0 11.68 Tf -0.0324 Tc -0.1276 Tw (\(pp. ) Tj -384.72 -13.44 TD -0.04 Tc 0 Tw (658) Tj 17.52 0 TD -0.0494 Tc (-) Tj 3.84 0 TD -0.0034 Tc -0.0066 Tw (663\), New York, NY: Springer) Tj 145.32 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.003 Tc (Verlag.) Tj 34.8 0 TD 0 Tc -0.04 Tw ( ) Tj -222.72 -13.44 TD ( ) Tj 0 -13.44 TD 0.0015 Tc 3.4985 Tw (Watson, R. A., & Pollack, J. B. \(2000\). Rec) Tj 232.56 0 TD -0.0034 Tc 3.5234 Tw (ombination Without Respect: Schema) Tj 0 Tc -0.04 Tw ( ) Tj -215.16 -13.44 TD -0.0102 Tc 2.9462 Tw (Combination and Disruption in Genetic Algorithm Crossover. In D. Whitley, D.) Tj 0 Tc 0.08 Tw ( ) Tj 0 -13.44 TD -0.0022 Tc 1.5222 Tw (Goldberg, E. Cantu) Tj 93.84 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0263 Tc 1.6263 Tw (Paz, L. Spector, I. Parmee, & H.) Tj 160.08 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0045 Tc 1.5245 Tw (G. Beyer \(Eds.\),) Tj 0 Tc -0.04 Tw ( ) Tj 83.64 0 TD /F3 11.68 Tf -0.0026 Tc 1.5226 Tw (Proc. of the) Tj 0 Tc -0.16 Tw ( ) Tj -345.24 -13.44 TD 0.01 Tc 0.07 Tw (2000 ) Tj 27.36 0 TD -0.003 Tc 1.043 Tw (Genetic and Evolutionary Computation Conference) Tj 245.4 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3.96 0 TD -0.0013 Tc 1.0413 Tw (\(pp. 112) Tj 40.08 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0237 Tc 1.1837 Tw (119\), San Mateo,) Tj 0 Tc -0.04 Tw ( ) Tj -320.64 -13.44 TD -0.0039 Tc 0.0239 Tw (CA: Morgan Kaufmann.) Tj 114.48 0 TD 0 Tc -0.04 Tw ( ) Tj -131.88 -13.44 TD ( ) Tj 0 -13.44 TD -0.0054 Tc 3.2854 Tw (Whitley, D. L. \(1995\). Genetic Algorithms and Neural Networks. In G. Winter, J.) Tj 0 Tc -0.16 Tw ( ) Tj 17.4 -13.44 TD -0.0099 Tc 3.1499 Tw (Periaux, M. Galan,) Tj 0 Tc -0.04 Tw ( ) Tj 100.8 0 TD -0.087 Tc 0.047 Tw (& ) Tj 15.24 0 TD -0.0151 Tc 3.1551 Tw (P. Cuesta \(Eds.\),) Tj 0 Tc -0.04 Tw ( ) Tj 90.36 0 TD /F3 11.68 Tf -0.0083 Tc 3.1783 Tw (Genetic Algorithms in Engineering and) Tj 0 Tc 0.08 Tw ( ) Tj -206.4 -13.44 TD -0.0127 Tc 0.0927 Tw (Computer Science) Tj 85.2 0 TD /F0 11.68 Tf 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0013 Tc -0.0387 Tw (\(pp. 203) Tj 39 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD -0.0019 Tc 0.0339 Tw (126\). Chichester, UK: John Wiley &) Tj 171.6 0 TD 0 Tc -0.04 Tw ( ) Tj 3 0 TD -0.0157 Tc 0.2157 Tw (Sons, Ltd.) Tj 47.76 0 TD 0 Tc -0.04 Tw ( ) Tj -370.8 -13.44 TD ( ) Tj 0 -13.44 TD -0.0094 Tc 1.9094 Tw (Whitley, D. L., Starkweather, T., & Bogart, C. \(1990\). Genetic algorithms and neural) Tj 0 Tc -0.04 Tw ( ) Tj 17.4 -13.44 TD -0.0099 Tc 0.9599 Tw (networks: optimizing connections and connectivity.) Tj 0 Tc -0.04 Tw ( ) Tj 248.88 0 TD /F3 11.68 Tf 0.0021 Tc 1.0379 Tw (Parallel Computing) Tj 94.2 0 TD /F0 11.68 Tf -0.04 Tc 0 Tw (, ) Tj 6.6 0 TD /F3 11.68 Tf 0.04 Tc (14) Tj 11.76 0 TD /F0 11.68 Tf -0.0313 Tc 0.9513 Tw (\(3\), 347) Tj 37.8 0 TD -0.0494 Tc 0 Tw (-) Tj -399.24 -13.32 TD 0.02 Tc (361.) Tj 20.4 0 TD 0 Tc -0.04 Tw ( ) Tj -37.8 -13.44 TD ( ) Tj 0 -13.44 TD -0.023 Tc 0.193 Tw (Wolberg, W. H., & Mangasarian, O. L. \(1990\). ) Tj 223.68 0 TD -0.0018 Tc 0.1218 Tw (Multisurface method of pa) Tj 124.44 0 TD -0.0036 Tc 0.0836 Tw (ttern separation ) Tj -330.72 -13.44 TD -0.0084 Tc 0.1684 Tw (for medical diagnosis to breast cytology. ) Tj 194.04 0 TD /F3 11.68 Tf -0.0081 Tc 0.1814 Tw (Proc. of the Nat. Academy of Sciences of the ) Tj -194.04 -13.44 TD 0.0235 Tc 0 Tw (USA) Tj 21.36 0 TD /F0 11.68 Tf -0.04 Tc (, ) Tj 5.88 0 TD /F3 11.68 Tf 0.04 Tc (87) Tj 11.64 0 TD /F0 11.68 Tf -0.0154 Tc -0.0246 Tw (\(23\), 9193) Tj 48.6 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.024 Tc (9196.) Tj 26.4 0 TD 0 Tc -0.04 Tw ( ) Tj -135.12 -13.44 TD ( ) Tj 0 -13.44 TD -0.0059 Tc 0.0517 Tw (Yao, X. \(1999\). Evolving Artificial Neural Networks. ) Tj 253.92 0 TD /F3 11.68 Tf -0.0183 Tc 0.0983 Tw (Proc. IEEE) Tj 53.88 0 TD /F0 11.68 Tf -0.04 Tc 0 Tw (, ) Tj 5.76 0 TD /F3 11.68 Tf 0.04 Tc (87) Tj 11.76 0 TD /F0 11.68 Tf 0.0076 Tc -0.0476 Tw (\(9\), 1423) Tj 42.96 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.024 Tc (1447.) Tj 26.28 0 TD 0 Tc -0.04 Tw ( ) Tj -398.4 -13.44 TD ( ) Tj 0 -13.44 TD -0.0012 Tc 1.2062 Tw (Yao, X., & Liu, Y. \(1997\). A New Evolutiona) Tj 224.88 0 TD -0.0028 Tc 1.1868 Tw (ry System for Evolving Artificial Neural) Tj 0 Tc -0.04 Tw ( ) Tj -207.48 -13.44 TD -0.0102 Tc -0.0298 Tw (Networks. ) Tj 51.12 0 TD /F3 11.68 Tf 0.0102 Tc -0.0202 Tw (IEEE Trans. on Neural Networks) Tj 155.64 0 TD /F0 11.68 Tf -0.04 Tc 0 Tw (, ) Tj 5.88 0 TD /F3 11.68 Tf 0.04 Tc (8) Tj 5.76 0 TD /F0 11.68 Tf -0.0141 Tc 0.0941 Tw (\(3\), 694) Tj 36.96 0 TD -0.0494 Tc 0 Tw (-) Tj 3.84 0 TD 0.02 Tc (713.) Tj 20.4 0 TD 0 Tc -0.04 Tw ( ) Tj -297 -11.52 TD /F0 9.6944 Tf -0.0236 Tw ( ) Tj ET endstream endobj 113 0 obj 5867 endobj 110 0 obj << /Type /Page /Parent 111 0 R /Resources << /Font << /F0 6 0 R /F3 36 0 R >> /ProcSet 2 0 R >> /Contents 112 0 R >> endobj 6 0 obj << /Type /Font /Subtype /TrueType /Name /F0 /BaseFont /TimesNewRoman /FirstChar 32 /LastChar 255 /Widths [ 250 333 408 500 500 833 778 180 333 333 500 564 250 333 250 278 500 500 500 500 500 500 500 500 500 500 278 278 564 564 564 444 921 722 667 667 722 611 556 722 722 333 389 722 611 889 722 722 556 722 667 556 611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444 500 444 333 500 500 278 278 500 278 778 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 778 500 778 333 500 444 1000 500 500 333 1000 556 333 889 778 611 778 778 333 333 444 444 350 500 1000 333 980 389 333 722 778 444 722 250 333 500 500 500 500 200 500 333 760 276 500 564 333 760 500 400 549 300 300 333 576 453 250 333 300 310 500 750 750 750 444 722 722 722 722 722 722 889 667 611 611 611 611 333 333 333 333 722 722 722 722 722 722 722 564 722 722 722 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 549 500 500 500 500 500 500 500 500 ] /Encoding /WinAnsiEncoding /FontDescriptor 7 0 R >> endobj 7 0 obj << /Type /FontDescriptor /FontName /TimesNewRoman /Flags 34 /FontBBox [ -250 -216 1200 1000 ] /MissingWidth 333 /StemV 73 /StemH 73 /ItalicAngle 0 /CapHeight 891 /XHeight 446 /Ascent 891 /Descent -216 /Leading 149 /MaxWidth 1000 /AvgWidth 401 >> endobj 19 0 obj << /Type /Font /Subtype /TrueType /Name /F1 /BaseFont /TimesNewRoman,Bold /FirstChar 32 /LastChar 255 /Widths [ 250 333 555 500 500 1000 833 278 333 333 500 570 250 333 250 278 500 500 500 500 500 500 500 500 500 500 333 333 570 570 570 500 930 722 667 722 722 667 611 778 778 389 500 778 667 944 722 778 611 778 722 556 667 722 722 1000 722 722 667 333 278 333 581 500 333 500 556 444 556 444 333 500 556 278 333 556 278 833 556 500 556 556 444 389 333 556 500 722 500 500 444 394 220 394 520 778 500 778 333 500 500 1000 500 500 333 1000 556 333 1000 778 667 778 778 333 333 500 500 350 500 1000 333 1000 389 333 722 778 444 722 250 333 500 500 500 500 220 500 333 747 300 500 570 333 747 500 400 549 300 300 333 576 540 250 333 300 330 500 750 750 750 500 722 722 722 722 722 722 1000 722 667 667 667 667 389 389 389 389 722 722 778 778 778 778 778 570 778 722 722 722 722 722 611 556 500 500 500 500 500 500 722 444 444 444 444 444 278 278 278 278 500 556 500 500 500 500 500 549 500 556 556 556 556 500 556 500 ] /Encoding /WinAnsiEncoding /FontDescriptor 20 0 R >> endobj 20 0 obj << /Type /FontDescriptor /FontName /TimesNewRoman,Bold /Flags 16418 /FontBBox [ -250 -216 2 1000 ] /MissingWidth 1 /StemV 136 /StemH 136 /ItalicAngle 0 /CapHeight 891 /XHeight 446 /Ascent 891 /Descent -216 /Leading 149 /MaxWidth 2 /AvgWidth 427 >> endobj 22 0 obj << /Type /Font /Subtype /TrueType /Name /F2 /BaseFont /Arial,Bold /FirstChar 32 /LastChar 255 /Widths [ 278 333 474 556 556 889 722 238 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 333 333 584 584 584 611 975 722 722 722 722 667 611 778 722 278 556 722 611 833 722 778 667 778 722 667 611 722 667 944 667 667 611 333 278 333 584 556 333 556 611 556 611 556 333 611 611 278 278 556 278 889 611 611 611 611 389 556 333 611 556 778 556 556 500 389 280 389 584 750 556 750 278 556 500 1000 556 556 333 1000 667 333 1000 750 611 750 750 278 278 500 500 350 556 1000 333 1000 556 333 944 750 500 667 278 333 556 556 556 556 280 556 333 737 370 556 584 333 737 552 400 549 333 333 333 576 556 278 333 333 365 556 834 834 834 611 722 722 722 722 722 722 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 556 556 556 556 556 278 278 278 278 611 611 611 611 611 611 611 549 611 611 611 611 611 556 611 556 ] /Encoding /WinAnsiEncoding /FontDescriptor 23 0 R >> endobj 23 0 obj << /Type /FontDescriptor /FontName /Arial,Bold /Flags 16416 /FontBBox [ -250 -212 1175 1000 ] /MissingWidth 326 /StemV 153 /StemH 153 /ItalicAngle 0 /CapHeight 905 /XHeight 453 /Ascent 905 /Descent -212 /Leading 150 /MaxWidth 979 /AvgWidth 479 >> endobj 36 0 obj << /Type /Font /Subtype /TrueType /Name /F3 /BaseFont /TimesNewRoman,Italic /FirstChar 32 /LastChar 255 /Widths [ 250 333 420 500 500 833 778 214 333 333 500 675 250 333 250 278 500 500 500 500 500 500 500 500 500 500 333 333 675 675 675 500 920 611 611 667 722 611 611 722 722 333 444 667 556 833 667 722 611 722 611 500 556 722 611 833 611 556 556 389 278 389 422 500 333 500 500 444 500 444 278 500 500 278 278 444 278 722 500 500 500 500 389 389 278 500 444 667 444 444 389 400 275 400 541 778 500 778 333 500 556 889 500 500 333 1000 500 333 944 778 556 778 778 333 333 556 556 350 500 889 333 980 389 333 667 778 389 556 250 389 500 500 500 500 275 500 333 760 276 500 675 333 760 500 400 549 300 300 333 576 523 250 333 300 310 500 750 750 750 500 611 611 611 611 611 611 889 667 611 611 611 611 333 333 333 333 722 667 722 722 722 722 722 675 722 722 722 722 722 556 611 500 500 500 500 500 500 500 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 549 500 500 500 500 500 444 500 444 ] /Encoding /WinAnsiEncoding /FontDescriptor 37 0 R >> endobj 37 0 obj << /Type /FontDescriptor /FontName /TimesNewRoman,Italic /Flags 98 /FontBBox [ -250 -216 2 1000 ] /MissingWidth 1 /StemV 73 /StemH 73 /ItalicAngle -11 /CapHeight 891 /XHeight 446 /Ascent 891 /Descent -216 /Leading 149 /MaxWidth 2 /AvgWidth 402 >> endobj 58 0 obj << /Type /Font /Subtype /TrueType /Name /F4 /BaseFont /Arial /FirstChar 32 /LastChar 255 /Widths [ 278 278 355 556 556 889 667 191 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 278 278 584 584 584 556 1015 667 667 722 722 667 611 778 722 278 500 667 556 833 722 778 667 778 722 667 611 722 667 944 667 667 611 278 278 278 469 556 333 556 556 500 556 556 278 556 556 222 222 500 222 833 556 556 556 556 333 500 278 556 500 722 500 500 500 334 260 334 584 750 556 750 222 556 333 1000 556 556 333 1000 667 333 1000 750 611 750 750 222 222 333 333 350 556 1000 333 1000 500 333 944 750 500 667 278 333 556 556 556 556 260 556 333 737 370 556 584 333 737 552 400 549 333 333 333 576 537 278 333 333 365 556 834 834 834 611 667 667 667 667 667 667 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 500 556 556 556 556 278 278 278 278 556 556 556 556 556 556 556 549 611 556 556 556 556 500 556 500 ] /Encoding /WinAnsiEncoding /FontDescriptor 59 0 R >> endobj 59 0 obj << /Type /FontDescriptor /FontName /Arial /Flags 32 /FontBBox [ -250 -212 1190 1000 ] /MissingWidth 272 /StemV 80 /StemH 80 /ItalicAngle 0 /CapHeight 905 /XHeight 453 /Ascent 905 /Descent -212 /Leading 150 /MaxWidth 992 /AvgWidth 441 >> endobj 79 0 obj << /Type /Font /Subtype /TrueType /Name /F5 /BaseFont /Arial,BoldItalic /FirstChar 32 /LastChar 255 /Widths [ 278 333 474 556 556 889 722 238 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 333 333 584 584 584 611 975 722 722 722 722 667 611 778 722 278 556 722 611 833 722 778 667 778 722 667 611 722 667 944 667 667 611 333 278 333 584 556 333 556 611 556 611 556 333 611 611 278 278 556 278 889 611 611 611 611 389 556 333 611 556 778 556 556 500 389 280 389 584 750 556 750 278 556 500 1000 556 556 333 1000 667 333 1000 750 611 750 750 278 278 500 500 350 556 1000 333 1000 556 333 944 750 500 667 278 333 556 556 556 556 280 556 333 737 370 556 584 333 737 552 400 549 333 333 333 576 556 278 333 333 365 556 834 834 834 611 722 722 722 722 722 722 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 556 556 556 556 556 278 278 278 278 611 611 611 611 611 611 611 549 611 611 611 611 611 556 611 556 ] /Encoding /WinAnsiEncoding /FontDescriptor 80 0 R >> endobj 80 0 obj << /Type /FontDescriptor /FontName /Arial,BoldItalic /Flags 16480 /FontBBox [ -250 -212 1144 1000 ] /MissingWidth 317 /StemV 153 /StemH 153 /ItalicAngle -11 /CapHeight 905 /XHeight 453 /Ascent 905 /Descent -212 /Leading 150 /MaxWidth 953 /AvgWidth 479 >> endobj 81 0 obj << /Type /Font /Subtype /TrueType /Name /F6 /BaseFont /Arial,Italic /FirstChar 32 /LastChar 255 /Widths [ 278 278 355 556 556 889 667 191 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 278 278 584 584 584 556 1015 667 667 722 722 667 611 778 722 278 500 667 556 833 722 778 667 778 722 667 611 722 667 944 667 667 611 278 278 278 469 556 333 556 556 500 556 556 278 556 556 222 222 500 222 833 556 556 556 556 333 500 278 556 500 722 500 500 500 334 260 334 584 750 556 750 222 556 333 1000 556 556 333 1000 667 333 1000 750 611 750 750 222 222 333 333 350 556 1000 333 1000 500 333 944 750 500 667 278 333 556 556 556 556 260 556 333 737 370 556 584 333 737 552 400 549 333 333 333 576 537 278 333 333 365 556 834 834 834 611 667 667 667 667 667 667 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 500 556 556 556 556 278 278 278 278 556 556 556 556 556 556 556 549 611 556 556 556 556 500 556 500 ] /Encoding /WinAnsiEncoding /FontDescriptor 82 0 R >> endobj 82 0 obj << /Type /FontDescriptor /FontName /Arial,Italic /Flags 96 /FontBBox [ -250 -212 1109 1000 ] /MissingWidth 253 /StemV 80 /StemH 80 /ItalicAngle -11 /CapHeight 905 /XHeight 453 /Ascent 905 /Descent -212 /Leading 150 /MaxWidth 924 /AvgWidth 441 >> endobj 95 0 obj << /Type /Font /Subtype /TrueType /Name /F7 /BaseFont /Symbol /FirstChar 30 /LastChar 255 /Widths [ 600 600 250 333 713 500 549 833 778 439 333 333 500 549 250 549 250 278 500 500 500 500 500 500 500 500 500 500 278 278 549 549 549 444 549 722 667 722 612 611 763 603 722 333 631 722 686 889 722 722 768 741 556 592 611 690 439 768 645 795 611 333 863 333 658 500 500 631 549 549 494 439 521 411 603 329 603 549 549 576 521 549 549 521 549 603 439 576 713 686 493 686 494 480 200 480 549 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 620 247 549 167 713 500 753 753 753 753 1042 987 603 987 603 400 549 411 549 549 713 494 460 549 549 549 549 1000 603 1000 658 823 686 795 987 768 768 823 768 768 713 713 713 713 713 713 713 768 713 790 790 890 823 549 250 713 603 603 1042 987 603 987 603 494 329 790 790 786 713 384 384 384 384 384 384 494 494 494 494 600 329 274 686 686 686 384 384 384 384 384 384 494 494 494 600 ] /FontDescriptor 96 0 R >> endobj 96 0 obj << /Type /FontDescriptor /FontName /Symbol /Flags 6 /FontBBox [ -250 -220 1244 1005 ] /MissingWidth 331 /StemV 109 /StemH 109 /ItalicAngle 0 /CapHeight 1005 /XHeight 503 /Ascent 1005 /Descent -220 /Leading 225 /MaxWidth 1037 /AvgWidth 600 >> endobj 2 0 obj [ /PDF /Text /ImageC /ImageI ] endobj 5 0 obj << /Kids [4 0 R 16 0 R 21 0 R 40 0 R 55 0 R 60 0 R ] /Count 6 /Type /Pages /Parent 114 0 R >> endobj 64 0 obj << /Kids [63 0 R 67 0 R 70 0 R 73 0 R 76 0 R 84 0 R ] /Count 6 /Type /Pages /Parent 114 0 R >> endobj 89 0 obj << /Kids [88 0 R 92 0 R 98 0 R 101 0 R 104 0 R 107 0 R ] /Count 6 /Type /Pages /Parent 114 0 R >> endobj 111 0 obj << /Kids [110 0 R ] /Count 1 /Type /Pages /Parent 114 0 R >> endobj 114 0 obj << /Kids [5 0 R 64 0 R 89 0 R 111 0 R ] /Count 19 /Type /Pages /MediaBox [ 0 0 595 842 ] >> endobj 1 0 obj << /Creator /CreationDate (D:20080603140947) /Title /Author /Producer (Acrobat PDFWriter 5.0 for Windows NT) >> endobj 3 0 obj << /Pages 114 0 R /Type /Catalog >> endobj xref 0 115 0000000000 65535 f 0000489768 00000 n 0000489200 00000 n 0000490404 00000 n 0000045530 00000 n 0000489247 00000 n 0000478384 00000 n 0000479473 00000 n 0000000019 00000 n 0000001464 00000 n 0000044198 00000 n 0000001484 00000 n 0000044176 00000 n 0000044872 00000 n 0000044892 00000 n 0000045510 00000 n 0000054600 00000 n 0000045688 00000 n 0000054579 00000 n 0000479734 00000 n 0000480835 00000 n 0000118133 00000 n 0000481099 00000 n 0000482190 00000 n 0000054732 00000 n 0000062692 00000 n 0000099103 00000 n 0000062713 00000 n 0000099081 00000 n 0000099497 00000 n 0000113399 00000 n 0000099689 00000 n 0000113377 00000 n 0000099517 00000 n 0000099670 00000 n 0000113945 00000 n 0000482453 00000 n 0000483549 00000 n 0000113965 00000 n 0000118112 00000 n 0000194385 00000 n 0000148953 00000 n 0000118843 00000 n 0000148931 00000 n 0000118349 00000 n 0000118823 00000 n 0000149653 00000 n 0000179127 00000 n 0000149861 00000 n 0000179105 00000 n 0000149673 00000 n 0000149841 00000 n 0000179819 00000 n 0000179839 00000 n 0000194363 00000 n 0000208763 00000 n 0000194589 00000 n 0000208741 00000 n 0000483812 00000 n 0000484899 00000 n 0000223968 00000 n 0000208931 00000 n 0000223946 00000 n 0000234587 00000 n 0000489356 00000 n 0000224112 00000 n 0000234565 00000 n 0000246485 00000 n 0000234720 00000 n 0000246463 00000 n 0000261608 00000 n 0000246654 00000 n 0000261586 00000 n 0000276023 00000 n 0000261741 00000 n 0000276001 00000 n 0000297079 00000 n 0000276168 00000 n 0000297057 00000 n 0000485152 00000 n 0000486249 00000 n 0000486520 00000 n 0000487614 00000 n 0000297190 00000 n 0000324693 00000 n 0000297288 00000 n 0000324671 00000 n 0000324804 00000 n 0000345586 00000 n 0000489467 00000 n 0000324902 00000 n 0000345564 00000 n 0000428835 00000 n 0000345755 00000 n 0000428813 00000 n 0000487876 00000 n 0000488942 00000 n 0000428946 00000 n 0000440473 00000 n 0000429033 00000 n 0000440450 00000 n 0000452255 00000 n 0000440630 00000 n 0000452232 00000 n 0000462322 00000 n 0000452414 00000 n 0000462300 00000 n 0000472167 00000 n 0000462457 00000 n 0000472145 00000 n 0000478248 00000 n 0000489581 00000 n 0000472302 00000 n 0000478226 00000 n 0000489659 00000 n trailer << /Size 115 /Root 3 0 R /Info 1 0 R /ID [] >> startxref 490455 %%EOF