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The paper proceeds as follows: Section 2 outlines the concepts of fitness landscapes and neutrality,
and goes on to describe the notion of problem difficulty as determined by the structure of the fitness
landscape. Section 3 introduces the notion of solution evolvability as defined by local characteristics of
the fitness landscape surrounding the solution, and derives and applies the problem difficulty metrics
used in the remainder of the paper. Section 4 describes the tunably rugged and tunably neutral terraced
NK landscapes used as test problems in this work. Sections 5 and 6 apply the metrics derived in section
3 to the test landscapes, and show that they predict the difficulty of searching in the tunably rugged and
tunably neutral landscapes. Finally, section 7 shows that the metrics are robust when applied to online
samples collected during simple hill-climbing, and the paper closes with discussion.

2 Fitness landscapes and neutrality

This section introduces two of the main concepts used in the paper. The fitness landscape (section 2.1),
first introduced by Wright (1932), describes the search space as a multi-dimensional landscape defined
by the genotype-to-fitness mapping through which evolution moves. The classical idea of searching this
landscape for good genotypes focuses on the difficulty of climbing up to the globally optimal fitness
solution, and avoiding locally optimal solutions. Here we argue that in difficult search problems, much of
the time spent optimising may be spent in non-adaptive neutral evolution (section 2.2). Thus measures
aimed at predicting the difficulty of search, must take account of the nature of neutrality in the space.



Figure 1: A two-dimensional model fitness land-
scape, with one globally-optimal and one locally-
optimal peak. From a starting point, typically cho-
sen at random, the search process tries to find good
solutions. The process typically creates a new set of
solutions through the application of genetic opera-
tors to the current solution(s), evaluating whether
the new set is better than the current solutions.
Evolving populations will tend to get stuck at the
locally-optimal peak due to its large basin of at-
traction, and from there will only find the global
optimum with difficulty.

A more exact picture, especially when dealing with solutions represented by discrete-valued genotypes,
is the connected graph (Stadler, 1996). Solution vertices, or nodes, are connected directly through the
action of the genetic operators. The graph may show the space in a very different way to the fitness
landscape: mutation operators acting on more than one loci, and other operators such as recombination,
may not ‘see’ fitness landscape hill-tops as local optima at all. However, local optima can clearly exist in
the graph, occurring as graph nodes from which all connected nodes are of lower fitness. This definition
may produce local optima with respect to genetic operators other than simply mutation, for example
some solutions may be local optima with respect to recombination operators.

The graph definition of the search space highlights the dangers in the simple visualisable picture afforded
to us by the fitness landscape description: our intuitive view may not apply in higher dimensional spaces.
Fisher, for example, argued that local optima may not exist in a large class of high-dimensional spaces;
the probability that a solution is optimal in every single dimension simultaneously is negligible (quoted
in Provine, 1986, p. 274). However, it should be stressed that many problems clearly do show local
optimality, e.g. the travelling salesman problem (Lawler et al., 1985). The next section introduces the
idea of search space neutrality, one possible way in which some high-dimension spaces may differ radically



(a) Unconnected peaks (b) Single neutral pathway (c) Broad neutral plateau

Figure 2: Three two-dimensional model fitness landscapes showing the possible advantage of neutrality in a
simple landscape with one globally-optimal and one (nearly) locally-optimal peak. (a) shows the two peaks as
unconnected; populations evolving to the locally optimal peak will have difficulty moving to the global optimum.
(b) shows the two peaks connected by a single neutral pathway; a population on the sub-optimal peak will
eventually find the pathway. (c) shows the two peaks connected by a broad plateau; the population will move
easily from the sub-optimal peak to the global optimum.

secondary structure folding algorithms show that neutral walks (a neutral variant on the random walk,







3.1 The transmission function



Eb =

∫
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f T (f : h, k) df (5)



where Fc defined by |G+
Fc

(h, k)| =
C |G(h, k)|

100
(13)

The mean fitness of the set of offspring with fitness in the bottom percentile can be defined through the
set G−

Fd
(h, k) of offspring with fitness below some fitness Fd.

The next section applies the metrics to a set of simple cases, where the parent genotypes lie at different
points in a hypothetical landscape.

3.4 Simple evolvability examples

The metrics derived in the previous two sections are here applied to a set of simple cases, showing their







landscape increases, up to the maximally rugged random K = N − 1 landscape, corresponding to the
random energy spin-glass model (Derrida, 1981). Early work by Weinberger (1990, 1991) has shown
that increasing ruggedness of the system is well predicted by the decrease in correlation length for the
system, and that the number of locally optimal peaks increases dramatically with K; this has long been
the benchmark result arguing that landscape ruggedness is the key feature for problem difficulty. Figure
6 shows the correlation lengths derived from random walks in the N = 25, K = [0, 1, 2, 6, 12, 18, 24]
landscapes; increasing K clearly produces more rugged landscapes with shorter correlation lengths.
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Figure 6: Correlation lengths calculated over ran-
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Figure 7: Correlation lengths calculated over ran-
dom walks on the neutrally terraced NK land-
scapes (mean and standard deviation over 1000
walks shown). Shown for N = 25, K =



with mean and deviation dependent on N,K and the current solution fitness (see e.g. Weinberger, 1990;
Stadler and Schnabl, 1992). From this it is possible to derive the expected fitnesses (and the time taken
on both adaptive and random walks) at which local optima are reached for various N and K (again, see
e.g. Weinberger, 1990; Stadler and Schnabl, 1992). In the next section we derive analytic and empirical
results for the evolvability measures when applied to the NK landscapes.

5.1 Analytically derived evolvability for NK landscapes

In this section, we focus on the probability that an offspring derived from a single bit mutation of the
parent has a higher (or equal) fitness than the parent, i.e. the first evolvability metr
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significantly smaller than the probability of reaching a local optimum in the non-neutral F = ∞. Rather
than sticking in local optima, the search process can explore more of the space along neutral networks,
eventually reaching higher fitness solutions.
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7 Online sampling evolvability

In the previous sections we have investigated empirically derived evolvabilities for the tunably rugged
and tunably neutral terraced NK landscapes through random sampling of the space of all solutions.
This random sampling technique works well with the NK landscapes where solution fitnesses are defined
as the linear sum of all loci fitnesses; due to the central limit theorem, the solution fitnesses will be
normally distributed. However, in many problems, such normally distributed solution fitnesses will not
be encountered, and metrics based on random sampling of the space will in general be less successful at
predicting problem difficulty (see e.g. Smith et al., 2001a).

With such skewed solution fitness distributions, it may be necessary to bias the collected sample through
only keeping a percentage of solutions found at each fitness, and define the problem difficulty metric
over this biased sample. With even more extremely skewed distributions, it may be necessary to collect
a biased sample through some direct search optimisation procedure such as a simple hill-climber. For












