Stephen Drake Phil Hus¹

-

2.1 Allele Bounds

A set of a^ri^re^re bounds deter nes t e enera^r d rect on n t e searc space w c an nd v dua^r ta es by def n n t e ran e n w c t e bounds ene ay f nd a prof tab^re pont Moreover f an ncrease n a ene s va^rue due to ^{ri} c^r b n effects an ncrease n t e nd v dua^r s f tness t en presu ab^ry ov n n t e ed ate^ry oppos te d rect on wou^rd prove detr enta^r to t e nd v dua^r s f tness e operator ^roo s for a ate w c conta ns enes w ose a^ri^re^res ^r e between t e correspond n ene s a^ri^re^re bounds n t e f rst parent e ne bour conta n n t e ost suc des rab^re enes s se^rected as a ate and one offspr n s produced w c cons sts of a^ri^r t ese des rab^re enes and t e re

3 Experiments

3.1 Functions Used

In order to assess t e perfor ance of n refat on to standard one point crossover various opt zat on proble s were used as represented by t e foffowing functions

e f rst t ree to be n zed are t e *i* ast n a su te of f ve funct ons or $na^{ij}y$ constructed by De Jon and w c were ntended to represent co on d ff cuit es a on opt zat on proble s n an solated anner

F De Jon s F as a s n le opt al value of and s def ned by

$$\sum \text{ nte er } x_i$$
$$\leq x_i \leq$$

F De Jon s F_{e} 's no sy rando Gauss an no se s added to ts value every t e t s evaluated and s defined by

$$\sum_{i=1}^{n} i x_i^{r^{-1}} + \text{Gauss}$$
$$\leq x_i \leq$$

for

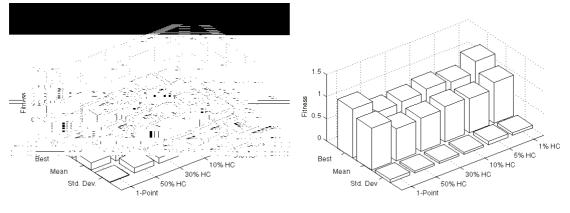
for

F De Jon s F as a *î*oba*î* n u of a*î*t ou t ere are any subo

 $F_{u,v}$ os urate a ur pea probre t e forrow n constra ned funct on was defined by Keane

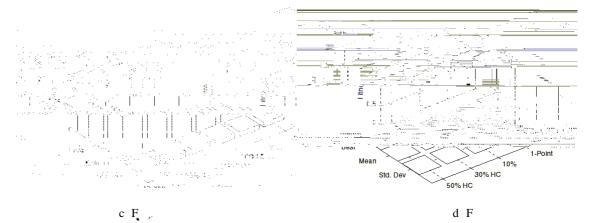
$$\frac{\left|\sum_{i=1}^{n} \cos^{-i} x_{i} - \prod_{i=1}^{n} \cos x_{i}\right|}{\sqrt{\sum_{i=1}^{n} i x_{i}}} \text{ for } < x < i = n$$

$$\sqrt{\sum_{i=1}^{n} i x_{i}}$$

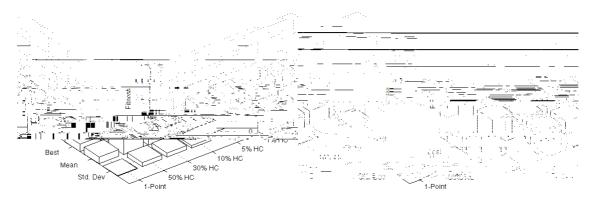

$$x_{i} < x_{i} < i = n$$

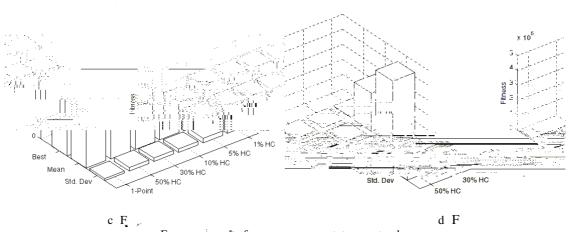
$$\prod_{i=1}^{n} x_{i} > i$$

for


sub ect to

and



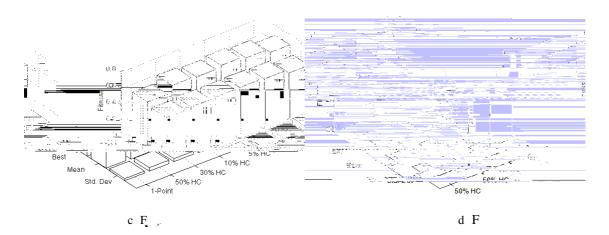


F ure results for runs us n utat on et od

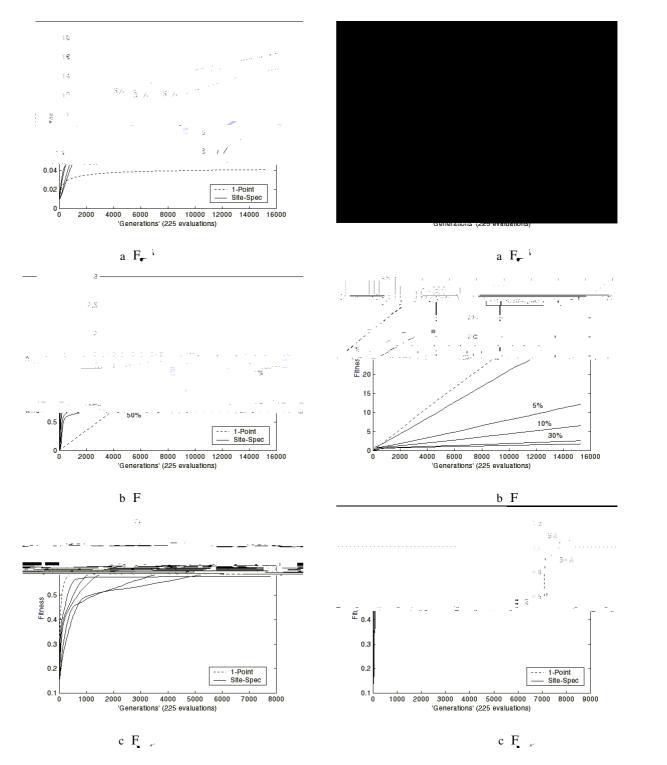


a F_ei

b F



F ure results for runs us n utat on et od



b F

 $F \quad ure \quad resu'ts \ for \ runs \ w \ t \qquad us \ n \qquad utat \ on \quad et \ n$

F ure avera e perfor ance of ord nary runs

F ure avera e perfor ance of runs w t focal searc

5 Discussion

On exa n n t e resuits part cuiariy t ose at ered for functions F_{r} and F ven t e r oppos n c aracteristics t s encoura n u e rt ne trapic c_{r} c d a d t_{r} d E q_{rrr} d u

s n f canti y Nevert e s t ere wou'd appear to be d st nct opt u *i*eve's of ii c' b n for t e d fferent funct ons f ure *ji* ustrates t at ait ou reduc n t e a ount of ii c' b n nvar abiu

at construct ve crossover operat ons are st \tilde{i} be n carr ed out even at t e very end of a run per aps nd cates a slow n of conver ence desp te t e accelerat on of prove ent and t at ntu t vely t e nature of t e

M McI' a a P Husbands and Ives A Co par son of Opt sat on ec n ques for Interated Manufactur n Prann n and c edur n n H M o t $r_{\mathcal{F}}$ Eber n I ec enber and H P c wefer ed tors *PPSN IV* pr n er

M McI^r a a P Husbands and Ives A Co par son of earc ec n ques on a $rac{}^{\sim}_{n}$ n Box Opt sat on Proble n H M o t $rac{}^{\sim}_{n}$ Ebel n I ec enber and H P c wefel ed tors *PPSN IV* pr n er

M M tc eff An Introduction to Genetic Algorithms MI Press

J D c affer A Caruana L J Es e⁻ an Das A tudy of Contro⁻ Para eters Affect n On L ne Perfor ance of Genet c A⁻ or t s for Funct on Opt zat on n J D c affer ed *Proceedings of the Third ICGA* Mor an Kauf an

G yswerda n for Crossover n Genet c A^r or t s n