Gaining access to Internet Quality of Service
from an Application(Netbase)

Nicholas Sharples

School of Cognitive and Computing Sciences
University of Sussex, Falmer, Brighton, BN1 9QH, United Kingdom

April 1997

Abstract

This paper is intended as an overview of my recent work toward the
construction, of a globally distributed database of WAN connectivity pat-
terns. It is the intent of such a system to provide client applications with
prior knowledge as to the Quality of Service(QoS), a path between two
host can provide, over a specified period of time.

Using remote objects and native methods now available with the lat-
est release of Java 1.1, a stable framework for development has been con-
structed. Remote objects provide potential developers with an API into
the system, while allowing client applications easy access to the data.
Native methods provide access to the finer grained platform dependent
timers; required for accurate network performance measures.

The main components of the system have been produced including
administration tools, a remote database server and information gathering
probes. Having now reached a point from which I can look at the work
undertaken, I wish to study it’s weakness and decide a strategy for future
development.

1 Introduction

The goal of the project is to provide an approximate measure of host to host
network connectivity, for specific time periods. It is hoped that over time,
continued analysis will reveal patterns in the networks usage which can be used
to predicted a base line QoS measure. At this stage in the development of the
system, no mechanisms has been established to deal with multiple paths between
hosts. Rather, through continual measurement the system should predict the
approximate average of the most commonly used paths between the test site
and the host.

The following sections decompose the problem into three areas, measuring
the network performance, the database used for data storage, and statistical
analysis of the obtained measurements.

By primary consideration when designing the structure of the system was to
develop, not just a complete application, but an environment for future devel-

——

Remote Remote
Users Clients Network Remote
Connection Probes
T Network R /.
Connection | g
Remote =
Probe Scheduler 2 Database
e

N
Probe Q O

Scheduler

Remote
Hosts

Local
Administration

Figure 1: System architecture

opment. To this end, the final system produced has been implemented using re-
mote objects. Using this approach the various information retrieval components
and statistical analysis functions of the system can be developed independently.
While still passing information back to a central database ready for distribution
to peer servers. SeembteJ13.200 indep)-19cu implemen)19informTde.01j14.76020Td fo5)Tj18.83980Td094(

The probe method must return a valid TimeSeries object which contains
the results of seriesLength successive probes with packets of packetSize, see the
TimeSeries class 4.4.1. If failedProbes probe attemps fail to return packets, the
method returns the timeSeries as is i.e. with the number collected or an empty
TimeSeries object. The internetAddress parameter specifies the destination end
of the path to be measured, the sending end of the path set by the location of
the probe object itself.

3 Measuring network performance

Before discussing the method used to analyse network load, it is important to
clearly define the information a user will require, and thus the information a
network analysis tool must provide. However, this is rather circular as the com-
pleted system will allow its users to customize the analysis functions to extract
information particular to their needs. To allow for this we must separate the per-
formance measures from the process of numerical analysis. Any measurement
tool developed, must provide the raw data rather the processed information.
This scheme provides a front end for statistical analysis and allows for a flexible
and extend-able environment for the end user. As a baseline goal, to begin
development, we have set ourselves the task of constructing a system capable
of calculating a QoS figure composed of three

Both packets, received by host
) bandwidth=3 bandwidth = 3

Bottle Neck
bandwidth = 1

Local Host Remote Host

First packet sent, traveling at 3 bits per second.
() bandwidth=3 bandwidth = 3

Bottle Neck
[TTTTTTTTTI -
bandwidth = 1

Local Host Remote Host

First packet hits bottle neck.

bandwidth =3 bandwidth =3

Bottle Neck

bandwidth = 1

Local Host Remote Host

Router Buffer

Figure 2: The remote host returns the two UDP packets. For this example the
packets are 12 bits.

returning acknowledgments. The inter-packet delay is the time taken to write
the second packet through the smallest bottleneck connection, on its return
journey. All delay sustained on the outward journey is negated when the first
packet hits the bottleneck in its return path. This technique can be simplified
with the use of ICERP ping packets, which every Internet host must return to the
sender. Using these we can send two packets of arbitrary size and measure the
inter-packet delay as the packets are return to their source. For a full description
of the return

Local Host

Local Host

that if the class is altered the objects cannot be de-serialized. So, object seri-
alisation should only be considered once the system is reasonable stable, and
an upgrade solution has been established. However, during development, the
database stored object state in simple text files. These files, designed more for
readability than performance, became the preferred method for data storage.
Allowing easy manipulation via text editors for test purposes and construction
of reports.

4.2 Data structure

To efficiently handle a query, the information must be stored in an optimal
structure. For the purposes of this system, a query will relate to a single host
over a time period i.e. Extract and analyse all the information for host x, from
9am till 10am.

The dynamical nature of the Internet makes accurate load predication ex-
tremely difficult. However, it is not the intent of this system to provide highly
accurate information, rather rough estimates provided by information taken
over extended periods of time. To minimise the in-accuracy a single result will
consist of n consecutive samples, compiled into a single time series. Each time
series represents the performance of the path for a single second of a 24 hour pe-
riod. Any subsequent tests performed at that second are added to those already
gathered. Each time series is assigned a minute key, by which it is grouped into
minutes, and minute summary values calculated. A host record on the database
contains a vector of minute summary values, it is these values which are extract
during a query.

4.3 Priming the database

To initiate the system a number of host address records must be established
on the database. It was my original intention to extract the address records
from the network access logs maintained by my local host. However, a more
flexible approach adopted later in the project was to perform a zone transfer
from the DNS using nslookup or DIG. For information on performing DNS zone
transfer see [AL97] page 229. Additional hosts will be added to the system as
user queries are unsatisfied. Specifically the following information is stored per
host.

4.4 The Host class

As well as the host information, an object of this class also acts as a container
for all the network performance data relating to it.

e The IP address of the host.
e The date the host entered the system.

e The date and time the host was last probed.

4.4.1 The TimeSeries class

This class acts as a container class for individual probe results. It also maintains
totals for all the ProbeResult objects it contains.

The IP address of the host.

The time and date the probe took place.

A vector of probe results

Number of probes which make up the series.

4.5 The ProbeResult class

This class represents the performance measure of the path from the probe to
the host.

e The IP address of the host.
e The time and date the probe took place.
e The size of the packet used.

e The measured bandwidth.

The measured round trip time.

The number of packets lost.

5 Database analysis

Users of the system will on the whole access the database across a network,
using remote objects. This offers two significant advantages. Client side anal-
ysis tools can be developed independently, and the CPU intensive analysis can
carried out by the client. For development and testing some simple schemes
were constructed, which through object inheritance can easily be extended by
future developers and users.

For each probe the bottleneck bandwidth can be calculated using the equa-
tion given in 1 where @)y is the queueing delay at the bottleneck and pB is the
bandwidth at the bottleneck. The bottleneck estimate can contain an amount
of noise, due to fluctuations in network traffic, to overcome this an average is
taken over several successive probes, and the bandwidth recalculated using the
equation 2. To calculate the average round trip time we use the equation 3
where 7, is the round trip time for packet n. Using this method does have
problems in that a lost packet has 0 round trip time, and cannot therefore be
included in the averaging calculations. The percentage chance of packet loss
can be calculated using 4. For a full discussion of the packet pair estimation
technique see [Jac88§]

b
_b 1
Qs B)
=13 Gm 2)
b—ni:1 b
r=ly 3)
= — ry —
ni:ll Tomn

5.1 User Interface

Although the system was primarily build to allow applications access to data,
during construction it became advantageous to have an overview of the data
collected. This requirement, lead to development of a graphical front end which
provides a graph like display showing the information collected per host. This
feature has survived through out development and now provides database ad-
ministration as well as simple client access to the current database.

References

[AL97] Paul Albitz and Cricket Liu. DNS and BIND. O’Reilly and Associates
Ltd, 1997.

[Jac88] Van Jacobson. Congestion avoidance and control. In Proc. ACM SIG-
COMM 88, University of California, August 1988. Sigcomm.

[Kes95] Srinivasan Keshev. A control-theoretic approach to flow control. In
Computer Communication Review, pages 188-201. ACER press, 1995.

[W.S94] Richard W.Stevens. TCP/IP Illustrated Volume 1. Addison-Wesly
Publishers Ltd, 1994.

10

