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Chapter 1

INTRODUCTION: GUIDELINE





detail the model in which the state transition table is the shared component among

the various machines. It is argued that this model, if conveniently constrained,

provides a way to address the issue of coupled computations in the context of En-

act's coevolutionary activity, and also that it opens the possibility of addressing the

issue of criticality phenomena in constrained spaces of computable functions. In

this respect Chapter 6 then briey sketches a particular Enact set-up within which

those possibilities might be realised, which has a simple de�nition but is su�ciently

rich in terms of the space of computable functions that it entails; this set-up also

serves to introduce a generalisation of Enact's main model of coupled computation.

All the issues related to the mentioned set-up should be seen as preliminary ideas

related to future work to be done, but even their partial presentation is useful to

clarify various aspects of the issue of coupled computations in the context of Enact.

� Finally, Chapter 7 is an evaluation of what has been done throughout the thesis, as

well as prospective in terms of what its achievements are pointing at. In particular

it highlights what has been achieved both in practical and conceptual terms; points

at practical problems with Enact as it stands; and provides a generalised de�nition

of the system that is currently being undertaken. It then concludes the thesis with a

personal statement on the historical pathways that led me to the research reported

herein.

1.3 Contributions of the Thesis

1.3.1 Results

The way we explored the research theme of this thesis was by adopting an engineering

standpoint. That is, although Enact is inspired by them, it is not a model of the biological

notions it relies on.

In keeping with that, the following results have been established:

� The architecture of Enact itself, insofar as it is a rather complete arti�cial life world

at the organismic level, fully couched in cellular automata terms.

� The programmability of the system, and the way to go about it.

� The identi�cation of a model of computation that is couched in terms of the high-

level arti�cial-life processes embedded in Enact.

� The exploration of the role of an explicit notion of space in the provision of coupling

between computations.

1.3.2 Claim

Further to those concrete results, I will argue that

� by conveniently constraining the process of coupled computations, Enact may prove

to be a useful tool to address the issue of coupled computations in the context of its

coevolutionary activity; and also that it opens the possibility of addressing issues

such as criticality phenomena in these constrained spaces of computable functions.

3



1.4 Publications and General Dissemination of the Work

Most of the core material in this thesis has been published in one form or another. This

section provides further details, also mentioning other forms of exposition of the work

such as talks that have been given.

Based on my research proposal outline I gave a talk in the Students Session of the



Chapter 2



There have been various international meetings on arti�cial-life-related topics. Most

notably, the Workshops on Arti�cial Life, of which Alife-II was the second edition, has

taken place in USA every other year since 1987 ([Langton 1989]). It alternates with the

European Conference on Arti�cial Life, since its inception in 1991 ([Varela and Bourgine

1992]). Another important regular conference is Simulation of Adaptive Behaviour, that

has taken place biennially since 1990 ([Meyer and Wilson 1991]).

More speci�c workshops have also appeared such as the Workshop on Physics and

Computation, which in its current { third { edition has become regular, but after the

�rst one took place in 1981 ([PhysComp-81 1982]); and the Workshop on Perception and

Action, which has just happened and very likely will have follow-ups. Various events

involving cellular automata (such as the workshop [CSC 1991]) have also found a new

thrust. The fact is that, in many countries more and more events have been organised

around Alife-related topics, from summer schools to special sessions and tracks in the

major international conferences (in control, for instance).

Various journals have also been created in the post Alife-II period in order to be partly

or fully devoted to arti�cial-life-related issues. These are [Meyer 1993], [Langton 1994],

[Jong 1994], and [Morowitz 1994].

Also, traditional journals have opened space for Alife, in particular the ones that

focus on AI and cognitive science. In this respect, it is worth mentioning [Cli� 1994], a

special-theme issue of AISBQ, the newsletter of the Society for Arti�cial Intelligence and

the Simulation of Behaviour; [Agre and Rosenchein 1993], a special issue of the Arti�cial

Intelligence journal; and [Huberman 1994], a forthcoming special issue of the latter journal

on nothing less than phase transitions, an issue that has very often appeared within Alife

(as in [Langton 1990]).

General presentations on arti�cial life abound. Langton's various discussions, such

as [Langton 1992a], are mandatory; [Belew 1991] emphasises its relations with arti�cial

intelligence; [Mikhailov 1992] follows an engineering-oriented perspective; and [Levy 1992]

provides a popular presentation, with an insider's view not only of research but also of

the researchers themselves, mainly the ones from the mecca of the �eld, the Santa Fe

Institute, Santa Fe, USA.

Various pieces of work emerged in the context of arti�cial life that bear relevance to

arti�cial intelligence and cognitive science. In addition to the fully embodied approaches

to cognition based on autonomous robots (as in [Brooks 1991b] and [Brooks 1991a]), it is



([Fogel and Atmar 1992]) the annual, so far USA-based, International Conference on

Evolutionary Programming.

The three techniques mentioned above { genetic algorithms (GA), evolution strategies

(ES), and evolutionary programming (EP) { are the main ones currently in use, although

variations do exist. The technique of genetic programming ([Koza 1990]) is also worthy

of mention. [Goldberg 1989] is still the most accessible entry point to the �eld of genetic

algorithms. The research pespectives in genetic algorithm as perceived in [De Jong 1985]

are still very up-to-date, mainly if compared with an assessment of the �eld written

nowadays, as in [De Jong and Spears 1993]. Of particular relevance to the arti�cial life

community is the review presented in [Mitchell and Forrest 1993], and also the work

on variable-length genotypes presented in [Harvey 1994]. [Fogel 1992] traces back the

history of evolutionary computation, speci�cally from the perspective of evolutionary

programming. [Ho�meister and B�ack 1991] is a convenient introduction to evolutionary

strategies, insofar as it is made by comparing it with genetic algorithms. [De Jong and

Spears 1993] is also adequate to provide a unifying view on the di�erent techniques of

evolutionary computation.

Basically they are search techniques in problem spaces gleaned from (an abstraction

of) evolutionary genetics. In all of them the search starts with a population of candidate

solutions that are generated by a random process. This population is then evaluated

in regard to their proximity to the expected solution of the problem at issue. Based

on this evaluation, a selection process is then carried out that picks out a subset of the

population, so as to form the basis upon which a new population will be created. The

latter is achieved by applying genetic operators to the pool of selected individuals, one

of them being sexual reproduction between pairs of individuals. The new population {

which is expected to be formed by a better set of candidate solutions than the former {

then replaces the original, and the process iterates.

The distinction between the three approaches is mostly due to the di�erent emphasis on

the role and usage of the genetic operators. So, while in GA the most important operator

is crossover { that creates two individuals out of two others, by exchanging segments

between the latter { in EP and ES mutations in the individuals have the primary role; in

fact, crossovers are hardly used at all. Also, while in ES the mutation rate is adaptive,

this is typically not the case in GA and EP. However, as [De Jong and Spears 1993] has

recently discussed, these di�erences are mostly historical; as a coherent theory of the �eld

progresses, these di�erences have become fuzzier.

It is worth distinguishing two



of huge attention in the last few years is their use to evolve neural networks. Various

surveys exist in this area, [Yao 1992] being a recent one.

2.3 Emergent Computation

A topic that will be particularly relevant in this thesis is what has been denoted emergent

computation, after a workshop on the topic, which was essential to gather momentum

for arti�cial life; its proceedings were published as [Forrest 1990]. The point here is the

characterisation of the global behaviour of a complex system in terms of information

processing. Many complex systems can be described in such a way, for instance, a neural

network, which, after having gone through a learning period, may become capable of

performing a computation; putting



ability to take part in the constructive process; a paradigmatic example of this kind of

system are chains of molecular reactions.

Another kind of system of coupled computations is the one based on coupled executions

of an assembly-like language that runs in a (typically) virtual machine.



advantages it suggests in respect to the systems described above. It is worth advancing,

however, that the advantages of the current approach will be argued but, for practical

reasons, will not be explored in a running set-up within the thesis; this will be explained

in Chapter 7. Finally, a natural generalisation of the Turing-machine-based approach will

then be made, that equates computations to the developmental processes undergone by

the agents.

Hence, in respect to coupled computations the contribution of this thesis will be the

de�nition of a modality of coupled computations that is entrenched in an arti�cial life

activity, and where the coupling medium of the computations is the space provided by

the cellular



recognised. Following a workshop on autopoiesis held in Dublin at the end of 1992 there

was some activity on the Internet, but not much recently. It is also worth mentioning

that there is a substantial overlap between the communities interested in enaction with

the one interested in autopoiesis { a concept that aims at characterising an organisational

principle of the living entities (see [Maturana and Varela 1987] for instance) { although

the latter has been more active. Anyway, complementing the practical aspects of enaction

that Brook's work epitomises (at least from Varela's viewpoint), for an in-depth account

of the philosophical issues that come out of enaction, and their analysis within the context

of a particular theme in cognitive science, namely, colour vision in di�erent animals, see

[Thompson et al. 1991].

The implicit reference to enaction that Enact carries in its name reects an acknowl-

edgement to enaction as an \umbrella" that encompasses various concepts which Enact

also attempts to emphasize, in particular the role of self-organisation. It also represents

a personal recognition to the fact that the �rst time I became aware of those concepts, in

a coherent way, was in the context of enaction.

In particular, it is a recognition to the biological roots of enaction, epitomized by the

concept of evolution as natural drift, the view of biological evolution that was developed

in an interwined fashion with enaction, as put forward in [Maturana and Varela 1987].

From a very general perspective, evolution as natural drift could well be summed up as

the view of evolution that also recognises self-organisation as another major component

in biological evolution, thus stressing the necessity of going beyond the predominant view

that natural selection provides. At least from this macro perspective this view is very

similar to the one Kau�man has put forward in [Kau�man 1991], which was epitomized

by his monograph [Kau�man 1993].

In the context of the latter topic, it is relevant to mention the biological notion of

exaptation



on one among a set of discrete values, which are the cell states. The states of all the

cells in the lattice are updated (typically) synchronously, the new state of each cell being

dependent upon the state of its local neighbourhood, i.e., its current state together with

the states of a group of neighbouring cells. The updating of each cell state is achieved

by applying to the cell neighbourhood a set of deterministic or non-deterministic state

transitions which together, de�ne the rule of the automaton.

The activity of cellular automata (CA) often takes place over an \inert" background,

sometimes called quiescent; in this



2.5.2 Sexual and Self-Reproduction in Cellular Automata

The important role of sexual reproduction in the provision of variability in nature, and

the fact that the most important evolutionary computation techniques rely upon sexual

reproduction, motivated the introduction of such a feature also in the context of Enact.



Authors Year

Number of Size of Initial Universal



Author Year

Number of Neighbourhood

Dimension Note

States Size

von Neumann �1952 29 5 2

Codd 1968 8 5 2

Smith III 1971 18 3 1

Banks 1971 3 5 2 blank background

Banks 1971 2 5 2 periodic background

Berlekamp et al. 1982 2 9 2 game-of-life

Albert and Culik II 1987 14 3 1

Lindgren and Nordhal 1990 7 3 1 simplest one currently known

Enact 1992 20 9 2

Table 2.2: Some cellular automata capable of universal computation.

have been proved to be capable of universal computation but, due to practical di�culties,

have never been actually implemented.

The data presented for Enact in the table assumed the implementation of the aforemen-

tioned Minsky's universal Turing machine, and draws from the machine we will implement

in Chapter 4. It is worth advancing, however, that the relevance of this implementation

is that it is couched in an arti�cial-life framework, which is novel; furthermore, it will

provide us with the necessary ground for more sophisticated forms of computation that

we will be dealing with in the subsequent chapters.

2.5.4 Forms of Computation in Cellular Automata

Computations appear in the cellular automata literature usually in two forms. The �rst

form, which has been called intrinsic computation, is the one performed directly from

the rule of the cellular automaton, the initial con�guration of the cellular array being the

input for the computation.



in non-intrinsic computation is the provision of a sustained dynamics over which the

computation will be performed. For instance, in the case of Enact, this dynamics is

precisely the arti�cial-life activity of the world, where we can identify high-level concepts

such as agent, environment, and so on. The input of the computation in this form of

computation is not the full initial con�guration of the cellular array, as in GKL's rule,

but only a part of it, like the state con�guration of one particular agent (again, in the

case of Enact). The way the game-of-life has been proved to be computation universal (in

[Berlekamp et al. 1982]) follows exactly this idea, as does von Neumann's self-reproducing

automaton, also mentioned. As far as I know, the work presented here was the �rst

attempt to explore non-intrinsic CA-based computations in a systematic way.

2.5.5 Computations and Complex Dynamics

From Alife-II the notion of edge-of-chaos dynamics started to become a widely dissem-

inated concept, mainly due to Langton's paper, [Langton 1992b] (even though he had

made the same claims earlier in [Langton 1990]). This notion was �rst put forward in

[Wolfram 1986a] in order to identify a special dynamical regime squashed between chaotic

regimes and the ones characterized by �xed points and cycle limits. The interest in these

complex dynamical regimes, as they are also denoted, lies in the fact that, as argued by

Langton and Wolfram, they possess the necessary conditions for the emergence of infor-

mation processing ability; that is, the possibility of transmitting information allowed by

the uidity of chaos, and the possibility of storing it due to the stability provided by

ordered regimes.

Edge-of-chaos dynamics has been the focus of intense research in various aspects, as

discussed in [Adami 1994], [Crutch�eld 1991], [Crutch�eld 1992], [Hanson and Crutch�eld

1991], [Kanebo and Suzuki 1993], [Li and Nordahl 1992], and [McIntosh 1990b]. In

particular, there is an intense activity going on at this moment on the relation between

computation in cellular automata and complex dynamics; in particular a major reappraisal

of results presented



The relationships between dynamical behaviour of cellular automata and computations

led me to question how it would be possible to have an estimate of the dynamical behaviour

of a cellular automaton directly from its state transitions, without having to run it. In

particular, how well the estimation of the complex dynamics would �t in the scheme.

It had been proved that the general answer to that question is undecidable. However,

it would still be possible to come up with an estimate that could be helpful in some cellular

automata rule spaces. In fact, the smallest non trivial rule space, the so-called \elementary

space" de�ned by the one-dimensional CA with binary states and three neighbours has

2

2

3

= 256 rules, while the one immediately larger (with �ve neighbours) has 2

2

5

> 4� 10

9

rules; hence, any estimate on large spaces would be really helpful.

In most studies carried out in CA rule spaces parameters have been devised, either

empirically or from a more formal point of view, that might help in establishing corre-

lations between the de�nition of a particular automaton and its dynamical behaviour.

This is the case of [Li 1989], [Li and Packard 1989], [Li 1991], and [Binder 1993], where

the elementary space was extensively studied. From a di�erent perspective [Wuensche

and Lesser 1992] provided extensive data on basins of attraction in the elementary space,

although the enumerative algorithm used therein can also be applied in higher spaces;

additionally, parametric analyses were also performed in that piece of work.

Analyses of a non-local version of the elementary space have also been a matter of

attention ([Li 1992] and [Wuensche 1994]).

Other studies have been made with the concern of scanning CA rule spaces in order

to probe their properties, such as the existence of phase transitions, which has been a

matter of great attention because of its supposed relation with computability of CA. For

discussion on the latter, see, for instance, [Li et al. 1990]; for an interesting mechanism

to scan CA rule spaces by imposing only small variations in the global behaviour of the

CA (in a close to continuous way), see [Pedersen 1990].

The approach I pursued to the problem was to search the space of parameters whose

de�nition would reect some sort of local activity with the individual state transitions.

The reference was the elementary space, where the classi�cation of the rules I used split

it in six classes of dynamical behaviour: null (rules that lead to a fully homogeneous end

con�guration), �xed-point, periodic with cycle 2, periodic with higher cycles, complex,

and chaotic. The search was undertaken as an extensive empirical process in which I

could de�ne a parameter, and obtain an analysis of the degree of discrimination it would

induce over the classes of dynamical behaviour of the space. For instance, one of the

parameters I found was an excellent discriminator between null and chaotic rules; two

others provided good discrimination between �xed-point rules and rules with cycles of

length 2. The idea was then to search for a group of parameters that jointly could

provide a good discrimination between the various dynamical behaviours, but bearing in

mind that the identi�cation CA with complex behaviour was the main target.

The parameter space I searched turned out to have some important members. Lang-

ton's � parameter ([Langton 1990]), for instance, belonged to the space. And so did the

Z-parameter of [Wuensche and Lesser 1992]; in fact, in personal contact with the �rst

author, it came out that the parameter had been de�ned and started to be used inde-

pendently by us at about the same time (although we had di�erent interpretations for

it).

As I realised that this \parameter-hunt" enterprise was pushing me much farther away

from my main research than I thought I should go, I decided to stop it at the �rst halting

point I could see ahead. That should be when I had found the group of parameters with

a good joint discrimination power, as mentioned above; this was exactly what I did. I

ended up with three parameters plus another that had two slight variations, thus yielding

17



in fact two very similar groups of four parameters.



Chapter 3

ENACT: ARTIFICIAL LIFE IN CELLULAR

AUTOMATA

1

3.1 Introduction

This chapter describes Enact, a cellular-automata-based architecture of autonomous agents

which this thesis rests upon. The level of approach we are interested in is the organis-

mic level based on a population of agents that undergoes a coevolutionary process. By

autonomous agents I do not mean autonomy in its technical sense as discussed for in-

stance in [Bourgine and Varela 1992]. Autonomy will be used in the context of Enact in

its informal connotation, so as to imply the lack of centralised control in the population

of agents, and the fact that each agent is an
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Figure 3.2: Structure and morphology of an agent in Enact. Phenotype and memetype

may change through environmental interactions, but while the initial adult state of the

former directly depends on the genotype, the latter is initially determined through direct

parental inheritance. For practical purposes however, only the P -state is considered the

agent's phenotype, and only the K-states its memetype (see Section 3.3).
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Figure 3.3: Alternative, simpli�ed representation of an agent. The B-states represent the

states of the body cells, with no reference to its internal structure.

What justi�es the way I am denoting the internal components of an agent { in terms of

genotype, phenotype and memetype { is the way each one of them is created in a newborn,

as well as the way they are allowed to be modi�ed during the agent's lifetime. These are

details about the reproduction and development of the agents that will be discussed later

on in this chapter.

It is worth advancing, however, that the (e�ective) phenotype will always be related to

the way an agent moves. Beyond that, later on we will be referring to computations being

performed out of the arti�cial life activity; in these contexts not only the phenotype, but

also the memetype will
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Figure 3.4: Succession of snapshots of the same set of cells as a 4-cell-long agent moves 2

cells leftwards in successive iterations. The dots represent the background state.

Because of the toroidal geometry of the cellular space, leftward and diagonal move-

ments are su�cient to ensure that the agents have the ability to cover the entire world.

In this way the agents are able to approach any other in the world and, when two of them

reach a prede�ned mating con�guration, they mate and reproduce; after each mating,

they begin wandering again and so does their o�spring.

As the cells of the agent move, a new state comes into play so as to occupy the

empty place of the cell that has just vacated, thus preserving the spatial continuity of the

agent; this state de�nes in fact, another category, and is represented here by the M-state.

Figure 3.4 and Figure 3.5 show agents moving respectively to the left and diagonally,

illustrating the action of the M-state. Note that a new M-state is created whenever the

head of the agent moves one step in any direction. It then propagates along the agent,

\pulling" the cells of the agent in the direction of its movement, one at a time; as the tail

is �nally pulled, the M-state disappears. Thus, the M-state exists within an agent only

while the movement is taking place, disappearing as soon as the agent stops.

In order to start a movement, the head of the agent �rst \senses" its neighbourhood,

in order to `check' whether the way ahead is `free'. If this is the case, then it `casts'

a movement state along the available direction, `trying' to start the movement. This

situation can be seen in Figure 3.4 during the transitions from time t

0

to t

1

and from t

2

to t

3

, and also in Figure 3.5 during the transitions from time t

2

to t

3

and from t

4

to t

5

. If

only one direction is available, only one movement state is cast out, which automatically

starts the movement according to the mechanism described above. However, if both

directions are available two M-states are cast out, an impasse is established which is

solved by a random choice not only among the competing directions, but also including

the possibility that the agent discontinue its movement by \withdrawing" both M-states

that have been cast out. More details about movement can be seen in Appendix A.2,

where the corresponding state transitions are listed.
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this interaction site never blocks the movement of an agent, since the agent is always able

to pass alongside it touching its top or its bottom, when it does not pass through the

site. As a matter of fact, con�gurations of E-states arranged horizontally or diagonally

can always be bypassed, while a vertical arrangement of two or more E-states is the only

con�guration able to block the way ahead of an agent.

The constraint imposed by interaction sites become evident by realising that Figure 3.7

is essentially Figure 3.5 with the interaction site at issue added. The trajectory described

by the agent is evidently the same in both situations. But while in the former the agent

is totally guided by the interaction site, in the latter it is totally dependent on the agent's

ability (or chance behaviour) of making only diagonal moves at each step.

It should also be noted there is nothing that prevents the de�nition of a dynamic

interaction site, i.e., a region of E-states with a dynamics of its own, independently of

whether it is interacting with an agent. Again, such a dynamics can be made arbitrarily

complex.

Another consequence of the introduction of the class of environmental states is that the

background 0-state { over which all activity takes place { becomes conceptually integrated

into the environment as a special kind of environmental state, one that can be traversed,

or occupied, by an agent.

3.6 Selection

Selection takes place in the following way: if for some reason the state of any cell of an

agent changes to the background state, in a mostly vacant neighbourhood (i.e., with most

of the cells being at the backgound state), the entire agent vanishes; the process occurs

in a stepwise way, during the next set of iterations. This feature is equivalent to saying

that agents which lose (at least) one cell, lose their contiguity, and cannot be considered

to be proper, well-formed agents; therefore they must die out. Appendix A.3 presents the

complete list of state transitions for selection; note there what is meant here by a `mostly

vacant' neighbourhood.

Therefore, in order to specify the selection process of a particular world set-up within
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Figure 3.7: Illustration of the notion of interaction site, represented here by the set of

four E-states in a cross-like fashion. The dots represent the background state, a special

form of environmental state that does not obstruct an agent in its way.

solving prede�ned problems. We return to this topic later on, in Subsection 3.10.1.

In order to keep coherence with the view of selection implicit to Enact, we should

replace the notion of an useful building block { the typical parlance within the context of

evolutionary computation techniques { by a non-deleterious one. Incidentally, it is worth

remarking that whenever we use the expression building block in this work all we mean

is a sequence of contiguous body cells, pairs or triplets, of the memetype. In the current

approach what is guaranteed is that any agent that is selected has some non-deleterious

building block, even though it may be useless for any preconceived role.

3.7 Development

As will be discussed later on in this chapter, the major shortcoming of a precursor of Enact

was a blur in the distinction between genotype and phenotype. Until then, both were

simply valid interpretions of the agent's body cells, according to the world set-up being

used. It is precisely such a problem that led to the inclusion of a developmental process

26
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to be discussed later on.

On the other hand, there is another facet of adult development which is a built-in

process supported by Enact, independently of any particular way the system is being

used. This facet a�ects the state of the head and is referred to as ageing. It takes place

throughout the lifetime of an agent and can eventually end up with its dying out. Hence,

whatever the agent is doing, it gets older, or at least, as currently implemented, there

is a chance of its getting older. The way it happens is by the head going through a

sequence of states, in a deterministic or non-deterministic fashion, the sequence length

being de�ned





as the last transition in Appendix A.4 shows); or, second, there is no more possibility for

the newborn to acquire a body cell from its parents (as shown in state transitions 6, 7

and 8).

What follows are details primarily involving the creation of the newborn's memetype.

The fundamental point about designing state transitions for reproduction is that it must

be able to provide variability without being disruptive, i.e., it should allow for the preser-

vation of the non-deleterious (viable) con�gurations of body cells already existing in the

neighbourhood. Since in the current approach any agent that is able to exist in the cel-

lular space has viable building blocks, what we have to do is to allow the probability

distribution of the non-deterministic rules to favour the reappearance of building blocks

of the parents, which are de�ned in the
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Figure 3.10: Causal links between the parameters that determine Enact's basic dynamics.

Only the expected life span is an explicit parameter, e�ectively controlled.

frequent deadlocks. Therefore it seems fair to say that the basic dynamics of population in

Enact is dominated by two attractors: extinction and deadlocks. Even though extinction

is the only formal attractor. By referring to the deadlock regime as another attractor, we

mean to highlight the fact that, in practical terms, once the deadlocks start, it becomes

very di�cult for the dynamics to be driven away from it, although such a possibility

always exists.

In Enact, free cellular space equals resource: for reproduction, which can bring about

novelty; and for movement, which allows environmental interactions. From the point of

view of \tuning" Enact for an arti�cial-life use, the second dynamical regime is the natural

option. Eventually, the population may fall into extinction or into frequent deadlocks,

but very likely, only after a very long transient characterized by a long-lasting, dynamic

population, marked by genotypic novelty and environmental interactions.

3.9.3 Enact's Regime of Operation

As discussed in Chapter 2 the studies on cellular automata dynamics presented in [Langton

1990] suggest that, as far as the emergence of life and computation in natural and arti�cial

systems is concerned, the \interesting" dynamics lies at a phase transition between order

and disorder. In the case of cellular automata rule spaces, this means the region of the

space between cellular automata that typically converge to limit points and cycles, and

others that lead to chaotic regimes. Although the characterisation of this region is not

precise some recurring features (to be presented below) have been accepted as necessary.

It happens that, by setting up





thus is on concepts such as viability rather than �tness, and evolution by satisfying world

constraints, rather than evolution towards solving prede�ned problems.

This approach to selection then stresses the point that, in general, it is not possible

to drive evolution in Enact to a prede�ned end-point. All that is possible is to prevent

some evolutionary pathways in advance. Of course, if all evolutionary pathways to a

particular end-point are known in advance, it becomes possible to precisely reach that

point; however, this is not the general case. Therefore, what matters the most in the

system are the pathways, not the ends.

Hence, selection in Enact is not only in tune with biological reality in terms of its

focussing on the elimination of un�t agents, but also in the sense that, insofar as it does

not stress the end-points of evolutionary paths, it opens up space for the exploration of

its evolutionary processes beyond the scope implied by selection for.

3.10.2 Movement is Enact's power-house

Movement is the primary source of interaction between the agents. The movement of an

agent has a local e�ect on the movement of its neighbours, and may propagate over the

cellular space due to the whole sequence of perturbations of movement to other members

of the population in its lifetime.

The amount of perturbation that a newborn is able to introduce into the organisation

of the population depends on the size of the population, the current dynamics of the world,

and the size of the cellular space. Essentially, the e�ect depends on the density of free

space currently available. If the population is close to extinction, a great many free cells

are available, and the newborn's inuence is bound to be locally damped. The consequence

is the same for the case in which the cellular space is overcrowded; in this situation, the

lack of movement of the population due to lack of available free cells, leaves very little

room for any perturbation to propagate through the population. However, in Enact's

dynamical regime of operation, i.e., away from extinction or deadlocks, it is likely that

the newborn's presence will be felt in a large extension of the cellular space.

7

Also, we can

expect a certain critical population density in this regime for which the perturbation will

be maximal, even reaching, in some cases, the entire population. Empirical observations

have con�rmed these expectations.

Except for ageing, which depends only on the clock-tick of the cellular space updat-

ing, all the other processes embedded in Enact are powered by movement. Even more

importantly, through movement all processes become coupled to each other. Movement

is therefore the \power-house" of Enact. Life, death and reproduction of the



pattern of movement; it only constrains an individual's movement by providing initial

conditions. Hence, it is through the genotype that the initial pattern of movement of an

agent is established.



as far as the search for viability is concerned, each new generation corresponds to a

breakdown in relation to the previous one: high mutation entailing the actual disruption



3.11 Implementation

Enact and its predecessors have been implemented on a Sun workstation using Cellsim

2.5, a public domain cellular automata simulator ([Langton and Hiebeler 1990].

11

The

commented C code for Enact's state transitions is presented in Appendix B. In the current

implementation the system has 29 state transitions for movement, 14 for reproduction, 9

for development, and about 37 for selection.

Each one of the six possible state categories is de�ned by a range of state values

speci�ed by the user, out of a total of 256 states. Additionally, there is a set of parameters

that can be manually set up to specify details of the movement of the agents (such as

the preferential direction of movement of an agent); the ageing rate of the population;

the rate of background mutation; etc. Other details about the implementation are made

explicit as comments in the code shown in the appendix.

3.12 An Historical Perspective of the System

This section is aimed at providing an historical perspective on the development of Enact.

However, as a contrasting point it would be worthwhile to wind back in time even before

the �rst steps towards Enact, and have a glimpse of the �rst attempt that was pursued.

3.12.1 Before Enact

As I started evaluating the use a cellular-automata-based architecture that could be ap-

propriate to support the emergence of functions, the �rst direction that was taken was

to try to insert, somehow, Lisp objects (S-expressions, i.e., lists and atoms) into cellular

automata. The idea was the possibility of observing the emergence of Lisp functions.

There were two strong appeals for using this language. An empirical reason was

that Lisp code had been used with great success in Koza's [1990] technique of genetic

programming mentioned earlier (also in [Koza 1992], which I had read a preprint of).

This technique is essentially a search method in the space of Lisp functions that �nds a

particular function to solve a prede�ned problem. Another suggestion one would get from

the literature would be the use of an assembly-like language, as in [Harvey 1991], but I

thought the higher-level of Lisp might be an advantage since shorter programs would be

possible that would code for more complex functions.

The other reason for the choice was that there was a Lisp de�nition that was es-

sentially the original proposition of a pure-Lisp, with some minor additions to make it

more amenable for implementation and use. This Lisp was presented in the monograph

[Chaitin 1987], where extensive formal analysis also made, from which one could work out,

for instance, the number of well-formed S-expressions of a certain size. This analytical

possibilities, might be an extra advantage when analysing the outcomes of the system I

was trying to design.

In parallel with this enterprise, I undertook a series of experiments with Cellsim in

order to learn about the behaviour of cellular automata in general; as a way to probe

their applicability as computing devices; and third, to evaluate the possibilities of Cellsim

as a platform for the system I wanted to implement.

Having learned that Fontana [1990] had implemented AlChemy to study the emergence

of functions in the Turing gas, this piece of work acted as a reinforcement to the approach

11

This version was implemented using the Sunview package, which is no longer available with Sun's

latest environment (Solaris 2.x). An X11R5-based implementation was performed by Felicity George

(fawg@epcc.ed.ac.uk) and is available from her upon request; however, it does not support colour

processing.

38



I was pursuing. First, because of the common conceptual ground they shared to some

extent. Additionally, the implementation of AlChemy was derived precisely from Chaitin's

Lisp, and fundamentally for the same reasons that the latter had become a reference for

me. And since Fontana had publicly o�ered his code { which was in C, the requirement

for using it in conjunction with Cellsim { it seemed as though some of my problems with

my own system would be solved.

But they were not. First, because I never managed to get hold of AlChemy's code.

Second, my practical experience with Cellsim soon made it evident how computationally

intensive would a cellular automaton be if its state transitions were to be based on the

outcomes of a Lisp interpreter. And third, as a matter of fact, I never really came up with

a Lisp-integrated architecture that I considered appropriate. The integration schemes I

could think of always seemed overly ad hoc. Because of all that, there was no alternative

than changing the approach.

3.12.2 Enact's Lineage

Enact is in fact the name of the last version in a trilogy of cellular automata embedding

an architecture of autonomous agents from an arti�cial-life perspective. The level of

approach we were interested in was the organismic level, based on a population of agents

that should undergo a coevolutionary process. Small modi�cations were systematically

performed throughout Enact's history, in order to account for its conceptual evolution,

and to progressively improve the already existing processes at each moment. What follows

is the main line of Enact's history of developments, which can be traced in three stages:

1. In [de Oliveira 1992a] the �rst version was introduced, presenting the basic con-

cepts of movement of the agents, selection and reproduction, and showing how these

processes could account for a simple form of evolutionary mechanism.

The motivation at this stage was to embed some form of evolutionary mechanism

into cellular automata, but with no optimisation concern.

It turned out that the temporal evolution of the cellular automata that were devel-

oped had a number of interesting features from the point of view of arti�cial-life,

to the extent that, by conveniently extending their de�nition and improving on the

conceptual issues underlying their use, it was possible that a framework to support a

class of arti�cial-life worlds could be developed. On pursuing this target the second

stage was reached.

2. In [de Oliveira 1993] environment was introduced, with which we showed the imple-

mentation of a Turing machine, stressing the methodological issues involved in the

use of the system as a programmable machine.

As an arti�cial-life world, its major drawback was the provision of interaction be-

tween the agents, which was very poor, since the only kinds of interaction provided

were reproduction, and the ones derived from movement. This problem led to the

notion of the interaction sites { by means of the environmental E-states { with which

the interactions among the agents could then be achieved with virtually unbounded

richness. In comparison with the �rst stage, Enact's second stage had incorporated

the following major improvements:

� The original notion of a \genotype", represented by the state category G, was

replaced by the notion of a body state B , in the sense of generic, active states

of the body cells which, depending on their use, could be regarded either as a

genotype or a phenotype.
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� The original movement m-state was replaced by the state category M .

� The environmental category, represented by the E-states, was created, the

background 0-state becoming conceptually encompassed by the environment,

as a special kind of environmental state.

However, as hinted at above, there was yet a major problem associated with the

framework, as it stood. Namely, the distinction between genotype and phenotype

of the agents was blurred. On one hand, reproduction could directly act over the

B-states as if they were the genotypes of the agents. On the other, in some world

set-ups the B-states could well be interpreted as a phenotype, even featuring a



the environment, it does not need the latter either. The ability to move on their

own is the primary attribute of the agents' autonomy.

3.13 Summary

In this chapter we described the arti�cial-life processes and overall dynamics involved

in Enact, a cellular-automata based architecture of autonomous agents that forms the

basis of this thesis. Enact is a family of two-dimensional, non-deterministic cellular au-

tomata, whose temporal evolution on a periodic background can be described in terms of

the metaphor of an arti�cial-life world where a population of worm-like agents undergo a

coevolutionary process. During their lifetime, the agents roam around, sexually reproduc-

ing, interacting with the environment, and being subjected to a developmental process

which includes ageing and death.

An agent is formed by a sequence of contiguous cells, so that the cells at each end

can be thought of as its head and tail, whereas the cells in between constitute its body.

A single cell of the body forms the agent's genotype. Another cell, whose initial state

just after neonatal development depends on the agent's gene, represents the phenotype.

The remaining cells of the body are fully determined through direct parental inheritance,

constituting what we call the agent's memetype.

As a consequence, the coevolutionary process supported in Enact is in general both

genetic and memetic. Since the phenotype is what determines the local direction of

movement of an agent at each time, and since its initial state depends on the agents'

genotype, the genetic coevolutionary process meant above refers, in fact, to the evolution

of a coordinated movement of the population. On the other hand, the memetic coevolu-

tionary process is the exploration of the e�ects of genotypic coevolution, as reected in

the changes that the agent's memetype undergoes.

The mechanics of the processes underlying the system was described in detail, and

qualitative issues related to its dynamics were discussed. In particular, it was shown that

the overall qualitative dynamics depends primarily on the ageing rate of the individu-

als, this being very straightforward to tune so as to prevent extinction of the agents or

deadlocks due to over-population, and guaranteeing the existence of very long transients.

Enact's rule { its complete set of state transitions { is fairly complex if compared

to standard cellular automata in the literature. It should be clear however, that our

interest here is not on the emergence of the arti�cial life activity it supports, but on

what can follow assuming its existence as a primitive we can rely on, and to a certain

extent, manipulate. In fact, as we will see in the next chapter, Enact can be regarded as

a programmable, virtual machine de�ned by its arti�cial-life processes, and relying upon

its six categories of states.
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Chapter 4

ENACT AS A VIRTUAL PROGRAMMABLE MACHINE

1

4.1 Introduction

As mentioned at the end of the last chapter, the second version of Enact was motivated

by the development of a framework to support a class of arti�cial-life worlds. In that





Turing Machine Cellular Automaton

Tape Sequence of E-states

Position of the head E

�

Blank symbol (B) E

b

Additional tape symbols (��B) E

s

(or E

ss

)

States of the TM (Q) B

s

(or B

ss

)

Mechanisms to move the head Interaction agent-environment

and to perform the computation (�) + Periodic background

Table 4.1: Correspondence between the constituent elements of a Turing Machine and

the states currently being used to implement it.

Accordingly, the sequence of environmental cells that constitute the tape also acquire

the necessary length for the computation to be performed. Although an in�nitely long

cellular array is not realisable, for all practical purposes it can be as large as required by

every particular computation.

There is, yet, the additional problem of dealing with the marker: how do we place it on

the tape? This is solved by imposing the requirement that the symbols to be used in the

computation be separated on the tape, by single blank symbols; these blanks then provide

a `free' space in the tape which can be occupied by the marker. The situation described

is illustrated in Figure 4.1; the correspondences between the constituent elements of a

Turing machine (according to the preceding subsection) and their implementation in the

current case are shown in Table 4.1. Refer also to the Table for explanation about the

notation used in the �gure.

Figure 4.1(a) shows snapshots of the same set of the cells as a 3-cell-long agent interacts

with the constituent E-states of the tape, performing one step of computation that results

in the head moving left; Figure 4.1(b) refers to a step of computation resulting the head

moving right. Note, in each �gure, the modi�cation of the position of the symbol E

�

which

is the head-marker. Other features to be noted include:

� It is assumed that the marker E

�

is placed on the left-hand side of the next tape

symbol to be read by the head.

� The various snapshots represent the stages that are needed for the various operations

associated with a step of computation. It is clear that it takes longer to complete

the step leading to a leftward move than the step leading
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4.3 Methodological Issues

In this section methodological issues are considered associated with the use of Enact. We

stress the general aspects of how to use the system in order to set up particular worlds,

which leads to the view of Enact as a \programing environment".

4.3.1 Programming Issues

As we have already discussed Enact is family of cellular automata whose common thread

is the same overall dynamics that characterizes the arti�cial-life world. The programming

issue in the



an implicit, or default set, composed of only state-preserving transitions. Accordingly,

in order to add a new behaviour to Enact it is necessary to



concept of quiescence as related to the preservation (or not) of the state category

of the centre cell of the neighbourhood in a state transition. Such an association

is not preserved in this thesis and should, therefore, be considered a revision of the

notion of quiescence used in that paper; as a matter of fact, a return to the way we

�rst used the term, in [de Oliveira 1992a].

� The notion of \instantiated role" here replaces the notion of \typical role" there.

With this substitution, together with the reformulation of the item above, a clearer

account of the instantiation process of a state transition was achieved.

� At the time the paper was written, Enact did not yet have a developmental process.

Hence, the third column of Table 4.4 had to be revised in order to accommodate

the new fact.

4.3.4 On the Possibilities of Enact

Enact has been designed to be fairly general in terms of its being used to set up arti�cial

life worlds; there are, however, several design constraints which would certainly be a

burden. For example, only one species is supported by the basic arti�cial-life world; also,

the movement of the agents is very limited. On the other hand, the exibility provided

by the state categories can be explored so as to enrich the basic dynamics in a number

of ways by the addition of instantiated transitions; by keeping the latter available for

use, they could be seen as libraries of functions, similar to the ones usually available in

standard programming languages.

There are, also, two practical problems associated with Enact. First, it is intrinsically

expensive in computational terms. Second, as hinted at earlier, programming it may

require a great deal of e�ort, particularly in the sense that it requires the user to be

aware of the all neighbourhoods the world set-up at issue will yield. But note that this is

not di�erent from a standard programming language, in which very rarely does a program

run as expected, without any \bug".

In setting up worlds with the system I have experimented with several options, such

as the ones mentioned below:

� A number of direct variations, including agents with distinct states for head and tail,

agents whose movement starts deterministically or whose upward body movement

is deterministic.

� Introduction of di�erent kinds of heads, with distinctive properties, such as di�erent

rates at which they start their movement, or specialisation towards the directions

the movement can start.

� Selective mating, for instance from parents whose head movement-properties are

somehow related (e.g., being the same). The point here is that, in the basic arti�cial-

life dynamics, mating is in principle just a matter of chance, since it occurs whenever

any two agents reach the mating con�guration. How(are)Tj
-38atter disl511000(n)ticallynalorlds67(w(are)Tj
-33ce)Tj
19.6r.,



� Alternative kinds of interaction sites, such as the one depicted in Figure 3.7. In that

case, depending on the \speed" an agent traverses the interaction site, a wealth of

outcomes are possible, as will be mentioned in Subsection 6.5.1.

� Various forms of ageing, either unconstrained (i.e., at each iteration of the cellular

automaton), or constrained by the occurrence of a prede�ned situation, such as

whenever the agent moves ahead, whenever it is unable to move ahead, or only

when it reproduces. In all these cases, death is a natural consequence as the agent

reaches an old age.

It is important to note that two agents, with the same initial state con�guration of

the body cells, may reach completely di�erent con�gurations after a certain time, because

they may have had distinct histories of interaction with the environment and the other

agents. And while the agents themselves are very simple, their history of interactions, as

we have shown with the Turing machine, can be arbitrarily complex. This feature has an

interesting consequence: by characterising the history of agent-environment interactions

in terms of computable functions, and constraining the setting of the arti�cial-life world

so that the histories can be mapped to a tractable region of the space of computable

functions, it becomes possible for the agents, through their body cells, to act as probes

into the emergence of new functions. Such an aspect of emergent computation associated

with Enact will be addressed in Chapter 6.

4.4 Turing Machines and Enact

Since the theme of Turing machines in the context of cellular automata will reappear in the

following chapters, it is useful to look already at some issues raised by the implementation

described above.

But beforehand, it is worth recalling that earlier in Subsection 2.5.3 we made a general

discussion on the issue of computability in cellular automata. Also, at that point of the

thesis we provided in Table 2.2 the number of states in Enact that would be necessary to

implement Minsky's [1967] universal Turing machine { with 4 tape symbols and 7 internal

states. Bearing in mind the implementation we have just discussed, in order to implement

the former universal Turing machine we can now make it clear that 20 states are then

needed, as follows: 4 + 1 + 1 + 1 E-states; 7 B-states; 1 + 1 + 1 M-states; and 1 + 1 + 1

T -states.

From a theoretical point of view, the implementation of the Turing machine in itself

is of little relevance, since, as Table 2.2 shows, the literature abounds with examples of

cellular automata capable of universal computation. But if we consider the current TM

from the perspective { mentioned at the end of the previous section { of using Enact to

address the issue of the emergence of computable functions, some aspects of the simulation

become theoretically relevant. Firstly, as we hinted at in Chapter 2, because it is couched

in an arti�cial-life system, which is novel, and not in an abstract setting whose relevance

would be constrained by the formal aspects it is related to.

Secondly, the simulation of the Turing machine represented the tape as a sequence

of E-states, and the agent's �rst B-state as the state of the machine. One might think

however, about the alternative implementation in which the tape would be in the agent as

a sequence of B-states, while the state of the machine would be part of the environment.

Although this latter scheme was not tried, the experience we acquired in the simulation

described strongly suggests that it is very much feasible. We will return to this aspect in

Chapter 6.
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Thirdly, note that the simulation requires the use of only one agent, the one that will

represent the state of the Turing machine. In fact, we could have used a population of

agents, but their �rst B-state would all have to be di�erent from the ones representing the

set of states of the machine; in this sense the population would be completely ine�ective

in terms of the computation being performed. As a matter of fact, not only the concept

of (an e�ective) population is absent from the simulation, but also the built-in concept

of reproduction; and, to some extent, the selection process was only partially used. Note

also that Turing machines are models of serial computation, whereas cellular automata

are essentially parallel devices. The situation of simulating serial computation with a

parallel one seems somewhat contradictory, as if resources were being badly used. The

point these considerations are driving



4.6 Summary

In this chapter we showed how Enact can be conceived of as a programmable virtual

machine, and how to go about programming it.

By providing an in-depth discussion on the implementation of a Turing machine as

a result of the interaction agent-environment, all necessary issues involved in the use of

the system for setting-up arti�cial worlds have been addressed. In particular, we have

discussed the central concept underlying its use, namely, the addition of instantiated state

transitions. As far as I am aware, Enact is the �rst cellular-automata-based system to

support the aspect of programmability in such an explicit way.

As pointed out earlier, in order to use the system knowledge of the high-level issues

discussed is not su�cient; an understanding of the role of the state transitions in the

global dynamics is also important. In this respect, it should be clear that we did not

intend to provide an \user's manual" about the set of state transitions of the system.

Based on the implementation of the Turing machine we then started the discussions

involving Enact and computations, paving the way for the next chapters.
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Turing Machine Implementation in Enact

Tape Memetype

States of the TM Phenotype

Position of the head K

�

Blank symbol of the tape K

b

Mechanisms to move the head Agent-environment interaction

and to perform the computation in periodic background

Table 5.2: Correspondence between the constituent elements of a Turing Machine and

the states currently being used to implement it.

usage of Enact.

2

5.3.1 Transforming the State Transition Table

In order to implement a TM according to the requirements of the current implementation,

the original state transition table of the function being implemented (as presented in

[Hopcroft and Ullman 1979]) has to undergo a transformation. Table 5.1 shows the

outcome of the transformation. The main aspects to be noted are as follows.

First, all state transitions that do not belong to the state transition diagram of the

original function are represented by (�; 0;�). They represent the steps of computations

that do not belong to the pathways that lead to the correct computation of the function.

When an agent performs one of these steps of computation, the agent has gone through

a developmental pathway that will not lead to the end of the computation; therefore,

the agent should be killed o�. For this reason the written state on the tape is \0", the

background state, which, by means of the built-in selection, automatically exterminates

the agent.

Second, there is an extra column in the table when compared with the original state

transition table (from [Hopcroft and Ullman 1979]). It corresponds to the additional

tape symbol K

f

, that is linked to E

f

. E

f

is the unique
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Figure 5.1: Representation of the �rst phase of a step of computation. The phase is

characterised by a state change in the associated Turing machine of the computation.

The dots represent the background state.

The requirement for inde�nitely extensible tape { as �rst discussed in Subsection 4.2.2

{ also has to be raised herein. In the current context this requirement is achieved by using

an arbitrarily long agent (with consequent arbitrarily long memetype), according to the

speci�c computation at issue. Naturally, there is no problem in achieving that, since the

dynamics of Enact can handle agents with arbitrary size.

As the computation is performed it is necessary to mark the position of the head in an

agent's memetype. Unlike the way we proceeded in Chapter 4 (where a special symbol

moved along the agent's body so that its position at any time indicated the next tape

symbol to be read), in the current case we point at the symbol to be read by means of

the association of each K

i

-state of the memetype, to a corresponding K

�

i

-state that marks

the head position on that memetype cell.
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implemented mechanisms.
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at the last stage of the process is the new position of the TM head de�ned, and the new

symbol written on the tape. It takes longer to accomplish the right-hand side process

because the agent has to be in an adequate position with respect to the template cell, so

as to create the conditions for the desired actions on the tape.

The state transitions that implement the mechanisms described above are summed

up in Tables D.1 and D.2 (both shown in Appendix D.1), which respectively account for

the hardwired mechanisms and for the state changes that are speci�cally determined by

the state transition table of the function being computed. The state transitions which

are centred in the �rst column of those tables apply to both the rightward and leftward

movement; the ones the appear only on one side (right-hand or left-hand) uniquely apply

to the movement corresponding to this side. The occurrence of the symbol E

LR

which

has been omitted here so far, should be noticed in the tables. It is a state of the template

cell that results from E

LR

, when the head of the TM should not move in either direction

(left or right), corresponding to the cases (�; 0;�) and (�;�;�) as shown in Table 5.1.

The dependences among the state changes associated with an agent and with the

interaction sites, as discussed in the current and the previous subsections, are shown in a

compact form in Figure 5.4. The �gure displays those states according to the others they

depend upon. For instance, P

ii

is represented as depending on E

i

and P

i

, following the

details of Table 5.4.

5.3.5 Halting Condition

At each environmental interaction the action on the tape will always be performed ac-

cording to the current state of the agent, as de�ned by its phenotype. But the state

change is determined by the E

i

-state of the interaction site. If the latter state is one that

leads to a phenotype state that does not match the corresponding actions of the tape and

head, then this step of computation will have been misperformed. The next environmen-

tal interaction of the resulting agent will therefore correspond to the (�; 0;�)-triplet of

the state transition table; consequently, selection will wipe out the agent as a result of

that interaction.

The only way an agent can survive an interaction with an arbitrary site is the situation

where its phenotype state is one of the �nal states of the computations, and the position of

the head is in the memetype �nal state. In Table 5.1 those states correspond, respectively,

to E

f

and K

f

, and the situation itself corresponds to the (�;�;�)-triplet.
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Figure 5.5: State con�guration

of agents that represent a correct

input and the corresponding

output of the computation. The

input agent represents a string

that is recognised as belonging to

the language �.

From this it becomes clear that, whenever the computation has �nished, some agent

has become \immortal". But it may be the case that one or more agents reaches a pattern

of movement that keeps them away from visiting any interaction site. Even if these agents

are not related to the end of a computation, in these situations they become immortal;
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but it should be remarked that this in fact a condition of pseudo-immortality, insofar as

the agent would not survive another interaction. The �nal test for checking the end of

the computation is, therefore, to subject the \suspected" agent to any interaction site.



in order



transitions shown do not guarantee that all newborn agents will represent the correct

input. But the ones that do not, will certainly be killed o� as they visit an interaction

site.
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intrinsic part of a process of evolutionary computation has been used before, although

from other perspectives. For instance, [Sannier II and Goodman 1987] demonstrates a

technique for doing arti�cial evolution using computations such that their outputs are

expressed as patterns of movement of agents on a two-dimensional space; and in [Whitley

1993] an architecture was proposed to integrate the notion of space in cellular automata

with standard genetic-algorithms, but which is still under development.

The implementation that provided the basis for the explanation of the model has

cast the computational process in terms of its performance by the elements of a Turing

machine. Such an approach served to characterise the main model of computation in

Enact; yet, while the discussions were made in this particular context, all conclusions and

conceptualisations should be regarded as general. We have shown how to code the input

data in the agents; how to transform the state transition table of the original computation

into an appropriate format that makes it amenable to the model's features; and how to

identify that the computation has �nished. For this implementation, it was described

how to go about allowing reproduction to autonomously create a population of newborn

agents so that, whenever an immortal agent has emerged, it has necessarily been the

result of a developmental process over a newborn that represented a correct input (and

never an intermediate triplet of the computational pathway).

Because the model of computation relies upon a population, it is essentially parallel;

but we have not explored this alley in the chapter. Other features worth remarking include

its emphasis on the notion of computation as a dynamical process (linking phenotype and

memetype); and its stress on computation as taking place precisely at the interaction

between agents and environment. Most signi�cant of all, the model has the appealing

feature of being cast in terms of a biological metaphor that integrates such concepts as

population, genotype, phenotype, memetype, development, selection and environmental

interactions.

This integration is possible because all the processes share the same notion of space,

the cellular space, which is explored via the coupled movement of the population. Based

upon such a feature we showed that the model of computation discussed can serve the

basis for a model of coupled computations, an issue that will be addressed in detail in the

next chapter.

5.7 Summary

It was shown how the entire dynamics of a class of evolutionary systems can be used to

perform a computation. The argument was constructive by presenting a Turing-machine-

based set-up implemented in Enact. As a byproduct, the chapter also served to charac-

terise the main model of computation underlying Enact.

This model is essentially parallel, and relies upon the machinery de�ned by the arti�cial-

life processes. According to the model, a particular computation is considered to have

been performed, if and only if, for some initial population and environmental con�gu-

ration, at least one agent has developed into a state con�guration that is insensitive to

any further environmental interactions; in this situation, if the computation involved is a

function, this individual has the result. If the population ever vanishes, or if the environ-

ment becomes short of the resources needed for development, the cellular space has to be

re-initialised, and the process iterated.

The presentation relied on the implementation of a function that recognises a particular

context-free language. Implications of the model of computation were then discussed, in

particular the model of coupled computations suggested by it.
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are shared among the processing agents.



6.3 Coupling Turing Machines through
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Figure 6.1: The three models of coupled Turing machines, in which the state transition

table (STT) is part of both the environment and the agent; that is, it is part of the space

they are de�ned in. The agents are represented at the bottom and the interaction sites

at the top.

The essence of all models of interest here is that the coupling will happen according

to the coordinated movement of the population of agents in the space they are de�ned in.

As they move about, they interfere with each other's trajectories, leading di�erent agents

to di�erent interaction sites at di�erent times, in a totally autonomous and decentralised

fashion.

Because the ToA and SoA models fully share so fundamental parts of the structure of

a TM { its internal state and the tape con�guration { two major problems arise:

� Both models become too brittle in terms of their ability to support coupled com-

putations in any practical way. The outcome of the couplings would too often lead

to meaningless computations, much like the e�ect of arbitrarily putting together

pieces of code from a standard programming language.

� The process of identi�cation of the end of a computation becomes irremediably

impaired. The end of a computation requires that not only a �nal state is reached,

but also that the TM head points at a prede�ned symbol at the tape. Because the

internal state and the tape are always disconnected in both ToA and SoA, there is

no straightforward way to identify when a computation has been completed. The

only possibility is by fully inspecting the state of the world at each iteration; but

this is a trivially uninteresting situation.

So far we have considered the interaction site as a singleton. This has been done

because it is easier to convey the idea of coupling with a unique coupling unit. However,

multiple interaction sites could alternatively be used. The major consequence is that the

resulting coupling scheme would be even tighter, insofar as the interference possibilities

between agents and sites would certainly increase. Naturally, the problems mentioned

above for the ToA and SoA models would become even more critical.

6.4 The STA Model

Because of the problems aforementioned a case will be made in this section for the advan-

tages of using the STA model. First of all, let us assume that multiple interaction sites
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are in use.

The role of the interaction sites is really twofold: they are an essential part of the

computation (for instance, by being the repository of the tape in the ToA model), and

they provide a spatial reference for when the coupling should e�ectively take place.

While



clear that while the coupling provided by the latter two is too tight (too much coupling),

in the weak STA scheme it is too loose (too little coupling).



will develop into. And it is an agent's development that is interpreted as a function, the

�nal state of the agent being the outcome of the function.

In this section we discuss what is gained by implementing the strong version of the

STA model within Enact. No actual computer run derived from a particular set-up of the

resulting model will be shown; only the conceptual issues that come out of it will be of

interest for present purposes. It should be said that, in fact, we will rely on a generalised

version of the STA model, which will be characterised below.

6.5.1 Towards Probing a Region of the Space of Computable Functions

It should also be remarked that, as I made clear at the end of Subsection 5.5, that only

conveniently constrained world set-ups, provide a useful way to address the issue of cou-

pled computations in the context of Enact's coevolutionary activity. This subsection hints

at one such Enact world that is currently under analysis, but whose details are beyond

the scope of this thesis. In addition to clarifying points that come out of embedding the

STA model within Enact, this section should also be regarded as a
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with the rest of its world. Hence, although the operations over pairs of memetype cells

are local and prede�ned, their overall consequence in the full memetype depends, in a

long span of time, on the whole history of events of the world.

Now, di�erent subsets of the state transitions de�ne distinct { possibly overlapping {

subspaces of the space of possible emergent functions. But because of the coupled history

of the agents' developments, which functions e�ectivelly emerge out of a run depend on

the actual initial condition of the set-up.

6.5.1.3 Possible Consequence

I believe that the set-up hinted at above constitutes an appealing case in which the is-

sue of coupled computations { in the context of Enact's coevolutionary activity { may

yield fruitful consequences. In general, it is expected that it may prove to be useful in

addressing some issues that link dynamics and computations in the context of cellular au-

tomata (along the lines mentioned in Chapter 2), in particular in the context of criticality

phenomena.

3

More precisely, the following questions could be addressed in this context:

1. For which initial and boundary conditions could only monotonic functions be iden-

ti�ed?

2. For which conditions would it be possible to prevent the existence



\: : :becomes, however, di�cult to study the consequences of such a loop at

the same level of description that has been used to study its emergence."

From another perspective, in the context of a discussion on cellular automata as \self-

programmable" systems, it is in [Rasmussen et al. 1992, page 219] that the

\: : :main di�culty with the CA approach seems to be associated with : : : the

extreme low-level representation of interactions."

It is worth remarking that Enact has two levels of description. Accordingly, the use of a

population of autonomous agents { the processing units involved in the computations {

are realised at a higher level than the one Enact itself is implemented at. In other words,

while Enact is de�ned from basic state transitions, the population of processing agents is

mainly de�ned through the high-level concepts of the system (such as agents, phenotypes,

memetypes and so on.)

Several issues can be explored in a comparison between the STA model of coupled

computations in Enact and other approaches. What follows is an attempt to compare

some of the aspects, mainly with respect to the Turing gas and Tierra. The model just

discussed has the following features:

� Evolutionary capabilities. Just like Tierra, the model can be used within an evolu-

tionary context, even though the actual evolutionary possibilities is not the same

for each of them. The Turing gas however lacks this feature, which is even explicitly

recognised in [Fontana 1992].

� Focussed emergent computations. The model can be used to tackle the problem

of emergent computations (or, in particular, of emergent functions) even in small

regions of the function space. The point is that the function space which is implicitly

de�ned by the state transition table { that characterises the interactions between the

agents and the environment { can be controlled in an independent fashion. This is

possibly the most fundamental aspect of the system. The tractability that is gained

implies that it becomes possible to approach the issue of functional emergence by

looking at the actual functions that emerge. In fact, this feature can be inferred from

Subsection 6.5.1 for that particular set-up that enables the emergence of functions

over a sequence of integers.

� Ability to link functional emergence to the (apparently disconnected) concept of

\phase" transition. By enabling the process of functional emergence to be focussed

in a region of the function space, it becomes possible to create a link between the

issues of functional self-organisation and phase transitions in some dynamical spaces

(see [Langton 1990]).

4

For instance, it becomes possible to refer to criticality phe-

nomena by means of the situations in an agent's lifetime which are determinant of

its long term development. That is, the critical points that determine which com-

putable function the development of an agent will end up being characterised by.

Aspects of the reversibility of computations also come up in this context. As sug-

gested in Subsection 6.5.1 the world set-up mentioned therein also seems appropriate

to address these aspects.

4

The primary concern on phase transitions presented in [Langton 1990] was its characterisation in the

rule space of cellular automata. The fact that Enact is implemented as cellular automata is even more

appealing with this respect.
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curs in a way that is limited by the locality constraint imposed by the neighbourhood,

it is not possible for reproduction to generate an arbitrarily speci�ed state con�guration

in the agent (in its memetype, to be precise). As a consequence, the automatic process

of continuous recreation of new inputs for the computation becomes impaired, thus ne-

cessitating the external introduction of new individuals that represent the input of the

computation.

7.2 The Balloonist Becomes a Driver: A Generalisation of Enact

A generalisation of Enact is currently under way, its rationale being the following: instead

of agents with a spatially distributed internal structure, they have become particle-like

agents in the new system, in a similar fashion to the one described in [Packard 1989]. The

upshot of this new design is





had been related to, and in searching for alternatives, started getting acquainted with

computational evolutionary biology. At this period I had my �rst contact with genetic

algorithms and classi�er systems in [Holland 1986], where a learning model was couched

in evolutionary terms; the essence of classi�er systems, really. Particularly important

for me was a very interesting paper by Lenat [1983] where he speculated on the possible

advantages that natural evolution might be taking from having learnt how to search the

space of species.

My search continued until 1987, when I attended a talk by F.Varela, during a Brazilian

scienti�c meeting. In this talk he presented a comparative analysis of approaches to

cognition, which was published as [Varela 1989]. His own view of cognition, named

enaction had a strong biological slant, and, although I could not understand exactly what

he was hinting at, I felt allured by it. What attracted me was not so much the point

he made about cognitive processes themselves, but the associated world view that the

enactive perspective was apparently suggesting; one in which the world would not be a

pregiven, independent, and prede�ned entity. One, as a consequence, from within which

the possibility would be open for the emergence of meaning to be observed in a genuine

way; that is, without the constraints and determinants that standard knowledge-based

approaches to learning featured at that time.

Varela's talk put everything I had read about cognitive science { learning in particular

{ into context and I could, for the �rst time, see the whole and have a glimpse of a

direction I was willing to go in. But I could only see very dim lights ickering in that

direction. Enaction still seemed to me an overly philosophic standpoint that I did not

quite understand. I needed more ground, a way to link



reading it was fundamental to clarify a bit further my understanding of his thought. Also

very helpful in this regard was [Winograd and Flores 1986], who widened various obscure

philosophical points somewhat further. It is worth remarking that, having come from

a purely symbolicist tradition in arti�cial intelligence { and not even fully aware of it!

{ all those philosophical discussions were very much a novelty for me. The chapter on

\Cognition as a biological phenomenon" was particularly relevant as it drew from previous

work of Varela, mainly his joint work with Maturana on autopoiesis, already referred to

in the thesis. The latter eventually led me to read [Maturana and Varela 1987], but my

concern remained in enaction itself.

Around the middle of 1989, I submitted my research proposal outline, which had made

its motivation clear in its title, Probing the emergence of a new function: A computational

account based on evolutionary genetics. I presented the theme in terms of the metaphor

of \crossing the barrier of meaning" developed in a little paper by Rota [1986], at the

opening of the aforementioned [Farmer et al. 1986]. The conceptual orientation was also

fairly coherent. The ideas concerning the likely computational model, however, turned

out to be premature. In fact, I still thought of it in terms of production systems and

genetic algorithms. Cellular automata were not even considered. And the stance of

looking at evolutionary processes in an intertwined fashion with learning (as in [Harley

1981], [Draper 1987], [Hinton and Nowlan 1987], and [Smith 1987]) was still very much

present. Also, the way I had approached the issue put too much emphasis on biological

concepts, as if I was going to model some aspect of biological reality. Finally, the research

proposal also had elements of a view of evolution from a developmental psychology point

of view, as in [Bateson 1985] and [Scaife 1989].

As a whole, the research outline made clear the motivation underlying the thesis.

Namely, looking at the emergence of functions with an enactive orientation, where the

emphasis on the issue of self-organisation would be fundamental.

However, I soon came to realise that, on the one hand, I did not have the right tools,

or at least, I did not know enough about the new ones I had come across, such as cellular

automata. On the other, it also became clear that I was overly committed to a biological

account just because of the original basis of genetic algorithms, and also that I was being

unecessarily inuenced by high-level notions derived from my former background; both

biases, by the way, were echoed in the background of my then supervisor, a developmental

psychologist who had been formerly a biologist. And �nally, the notion of function I was

explicitly subscribing to (the utilitarian sense), was blurred with the one I had implicitly

in mind (the formal sense of computable functions).

Conceptually, those perceptions were pointing towards more abstraction; and in im-

plementation terms, towards the use of a more fundamental framework. And cellular

automata seemed to be at the convergence between the two. It was then a matter of

evaluating their possibility. With this impulse, the journey started. And what happened

afterwards has already been told...
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Appendix A

The Complete list of State Transitions in Enact

A.1



e�ciency of the implementation in terms of avoiding redundancies and inconsistencies

between di�erent transitions. Noteworthy in this respect is the redundancy expressed by

transitions A.3.18 and A.3.19, and the intrinsic inconsistencies due to transition A.4.14

in relation to A.2.11 or A.2.27. In practice such an inconsistency is solved by letting

transition A.4.14 occur after the ones it is conicting with, which means that precedence

is given for the transitions occurring during movement. What these points suggest is that

it is possible to express the set of transitions in a signi�cantly more optimized way not

only in terms of their not presenting internal conicts or redundancies, but also in terms

of a more concise representation which would signi�cantly speed up its computation at

each iteration.

A.2 State Transitions for Movement
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Appendix B

The C code that implements Enact in Cellsim 2.5

#include "nborhood.h"

#include <stdio.h>

#include <values.h>

#define ON 1

#define OFF 0

#define Tmin 1 /* minimum value for a Terminal-state */

#define Tmax 7 /* maximum value for a Terminal-state */

#define Dmin 8 /* minimum value for a boDy_state */

#define Dmax 20 /* maximum value for a boDy-state */

#define E00 0 /* Background environment-state */

#define Emin 21 /* minimum value for an Environment-state */

#define Emax 24 /* maximum value for an Environment-state */

#define Mmin 25 /* minimum value for a Movement-state */

#define Mmax 255 /* maximum value for a Movement-state */

#define PGK ON

#define MUT_R 2 /* rate of D_star in relation to D_mutant(C)Tj
17.0398 0 Td1IOring3
(#define)Tj
48 0 Td
(/*)Tj
15.8398 de

Dmax to



#define DEATH ON

/*

The parameter "parm1" sets the probability that, at each iteration, the

agents will NOT age (thus having the chance of living longer). The

probability of an agent getting older at each iteration is given by:

1 1

P(ageing) = --------- * 100% * -------

parm1 + 1 parm2

"parm2" is just a scaling parameter to allow a wider range of

expected life spans.

The "expected life span" is: (TLmax - TLmin) * (parm1 + 1) * parm2

or: (TDmax - TDmin) * (parm1 + 1) * parm2

*/

byte alife_dynamics(), Rand2(), Dstar(), Older(), Dev_T(),

get_bblock(), get_any_in_Neighb(), get_any_at_all(), get_mutant(),

D(), T(), M(), E(), P(), G(), K(), TD(), TL();

int L_MV(), D_MV(), L_MV_CONF(), D_MV_CONF();

static int i;

static byte s;

void init_function()

{

update_function = alife_dynamics;

parm1 = 29;

parm2 = 5;

}

byte alife_dynamics(nbors)

moore_nbors *nbors;

{

Get_moore_nbors;

/******************************************/

/************* SELECTION ******************/

/******************************************/

/* sel_0: Just to speed up computation */

if( !tl && !t && !tr &&

!l && !c && !r &&

!bl && !b && !br ) return (byte)0;

/* sel_1 */

if( E(tl) && E(t) && E(tr) &&

!E(l) && D(c) && E(r) &&

E(bl) && E(b) && E(br) ) return (byte)0;

if( !E(tl) && E(t) && E(tr) &&

E(l) && D(c) && E(r) &&

E(bl) && E(b) && E(br) ) return (byte)0;

if( E(tl) && E(t) &&

E(l) && T(c) && E(r) &&

(E(b) || T(b)) && E(br) ) return (byte)0;

/* sel_4 */
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if( T(tl) &&

E(l) && T(c) && E(r) &&

E(b) && E(br) ) return (byte)0;

if( E(tl) && E(t) &&

E(l) && T(c) && E(r) &&

T(br) ) return (byte)0;

if( E(tl) && E(t) &&

E(l) && D(c) ) return (byte)0;

/* sel_7 */

if( E(tl) && M(t) && E(tr) &&

E(l) && !E(c) && E(r) &&

E(bl) && E(b) && E(br) ) return (byte)0;

if( E(t) &&

E(l) && M(c) && E(r) &&

E(b) && E(br) ) return (byte)0;

if( E(tl) && E(t) && E(tr) &&

M(c) && E(r) &&

E(bl) && E(b) && E(br) ) return (byte)0;

/* sel_10 */

if( E(tl) && E(t) &&

E(l) && M(c) && E(r) &&

!T(br) ) return (byte)0;

if( E(tl) && E(t) &&

E(l) && M(c) && !T(r) &&

E(br) ) return (byte)0;

if( E(tl) && E(t) && E(tr) &&

E(l) && M(c) && E(r) &&

E(bl) && (D(b) || T(b)) ) return (byte)0;

/* sel_13 */

if( E(tl) && E(t) && E(tr) &&

D(l) && M(c) && E(r) &&

E(bl) && D(b) && E(br) ) return (byte)0;

if(



if( T(t) &&

E(l) && T(c) && E(r) &&

E(b) && E(br) ) return (byte)0;

/* sel_23: */

if( D(l) && T(c) && D(r) ) return (byte)0; }

if( E(t) &&

E(l) && M(c) && E(r) &&

E(b) && M(br) ) return (byte)0;

if( E(l) && M(c) && E(r) &&

E(bl) && (E(b) || M(b)) && E(br) ) return (byte)0;

/* sel_26 */

if( M(tl) && E(t) &&

E(l) && M(c) ) return (byte)0;

if( E(tl) && (T(t) || D(t)) &&

E(l) && (T(c) || D(c)) && E(r) &&

E(bl) && E(b) && E(br) ) return (byte)0;

if( E(tl) && T(t) &&

E(l) && (D(c) || M(c)) ) return (byte)0;

/* sel_29: prevents agents from being blocked by a "stack" of E-states (E>0). */

if( E(c) && c && E(b) && b ) return (byte)0;

if( (D(t) || T(t)) &&

E(l) && D(c) ) return (byte)0;

if( E(t) && T(c)==T00 ) return (byte)0;

/********** WITH "PGK" AGENTS, AND FROM RANDOM CONFIGURATIONS *********/

/* sel_32 */

if( G(c) && (P(r) || G(r)) ) return (byte)0;

if( K(c) && (G(r) || P(r)) ) return (byte)0;

if( P(c) && (K(r) || P(r)) ) return (byte)0;

/* sel_35 */

if( G(c) && E(r) &&

E(b) && (P(br) || G(br)) ) return (byte)0;

if( K(c) && E(r) &&

E(b) && (G(br) || P(br)) ) return (byte)0;

if( P(c) && E(r) &&

E(b) && (K(br) || P(br)) ) return (byte)0;

/* sel_38 */

/* if( T(l)==T00 && M(c) ) return (byte)0; */

/******************************************/

/************* MOVEMENT *******************/

/******************************************/

/* mov_1 */

if( E(tl) && E(t) && E(tr) &&

E(l) && !c && T(r) &&

E(bl) && E(b) && (E(br) || T(br)) ) return Rand2(Mdef, L_MV(r), 0);

if( E(tl) && E(t) && E(tr) &&

E(l) && !c && E(r) &&

E(bl) && E(b) && T(br) ) return Rand2(Mdef, D_MV(br), 0);

if( E(tl) && M(t) && E(tr) &&

E(l) && M(c) && T(r) &&

!E(bl) && E(b) && (E(br) || T(br)) ) return (byte)0;

/* mov_4 */

if( E(tl) && M(t) && E(tr) &&

E(l) && M(c) && T(r) &&

E(bl) && E(b) && (E(br) || T(br)) ) return Rand2(Mdef, L_MV_CONF(r), 0);
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if( !E(tl)



E(l) && ((T(c) && T(c)!=T00) || D(c)) ) return (byte)Mdef;

/* mov_25 */

if( !E(tl) && !E(t) &&

M(l) && T(c) && T(c)!=T00 ) return (byte)Mdef;

if( E(t) && E(tr) &&

(T(l) || D(l)) && !c && E(r) &&

E(bl) && D(b) && (T(br) || D(br)) ) return Rand2(Mdef, BTAIL_UP_R, 0);

if( (T(l) || D(l)) && M(c) && E(r) &&

E(bl) && D(b) && (T(br) || D(br)) ) return b;

/* mov_28 */

if( (T(tl) || D(tl)) && M(t) && E(tr) &&

E(l) && D(c) && (T(r) || D(r)) ) return (byte)0;

if( E(t) && E(tr) &&

D(l) && !c && E(r) &&

E(bl) && T(b) && E(br) ) return Rand2(Mdef, BTAIL_UP_R, 0);

/*******************************************/

/************* REPRODUCTION ****************/

/*******************************************/

/* rep_1 */

if( PGK )

{

if( E(tl) && T(t) && T(t)!=T00 && P(tr) &&

E(l) && !c && !r &&

E(bl) && T(b) && T(b)!=T00 && P(br) ) return T00;

if( T(tl) && (P(t) || M(t)) && !E(tr) &&

T(l)==T00 && !c && !r &&

T(bl) && (P(b) || M(b)) ) return P00;

}

else

{

if( E(tl) && T(t) && D(tr) &&

E(l) && !c && !r &&

E(bl) && T(b) && D(br) ) return Rand2(t, 1, b);

if( T(tl) && (D(t) || M(t)) && !E(tr) &&

T(l) && !c && !r &&

T(bl) && (D(b) || M(b)) ) return Rand2(Ddef, DST_R, Ddef);

}

if( (D(t) || M(t)) && !E(tr) &&

D(l) && !c && E(r) &&

!E(bl) && (D(b) || M(b)) ) return Rand2(Ddef, DST_R, Ddef);

/* rep_4 */

if( T(t) && E(tr) &&

D(l) && !c && E(r) &&

!E(bl) && (D(b) || M(b)) ) return Rand2(Ddef, DST_R, t);

if( (D(t) || M(t)) && !E(tr) &&

D(l) && !c && E(r) &&

(M(bl) || D(bl)) && T(b) && E(br) ) return Rand2(Ddef, DST_R, b);

if( T(t) && E(tr) &&

D(l) && !c && E(r) &&

(M(bl) || D(bl)) && T(b) && E(br) ) return Rand2(t, 1, b);

/* rep_7 */

if( T(t) && E(tr) &&

D(l) && !c && E(r) &&

E(b) && E(br) ) return t;

if( (T(tl) || !tl) && E(t) && E(tr) &&
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D(l) && !c && E(r) &&

(M(bl) || D(bl)) && T(b) && E(br) ) return b;

if( (D(t) || M(t)) && !E(tr) &&

D(l) && !c && E(r) &&

E(b) && E(br) ) return Rand2(Ddef, DST_R, Tdef);

/* rep_10 */

if( (T(tl) || !tl) && E(t) && E(tr) &&

D(l) && !c && E(r) &&

!E(bl) && (D(b) || M(b)) ) return Rand2(Ddef, DST_R, Tdef);

if( (M(t) || D(t)) && !E(tr) &&

D(c) && E(r) &&

E(b) && M(br) ) return (byte)0;

if( E(t) && M(tr) &&

D(c) && E(r) &&

(M(b) || D(b)) ) return (byte)0;

/* rep_13 */

if( (D(t) || M(t)) &&

E(l) && T(c) && E(r) &&

E(bl) && T(b) && D(br) ) return (byte)0;

if( D(l) && M(c) && E(r) ) return (byte)Tdef;

/******************************************/

/************* DEVELOPMENT ****************/

/******************************************/

/* NEONATE DEVELOPMENT */

/* dev_1 */

if( T(l)==T00 && P(c)==P00 && G(r) ) return (byte)Pdef;

if( T(c)==T00 && P(r) && P(r)!=P00 ) return (byte)Tdef;

/* ADULT DEVELOPMENT: AGEING AND DEATH */

/* dev_3: While not moving */

if( E(tl) &&

E(l) && T(c) && T(c)!=T00 &&

((P(r) && P(r)!=P00) || M(r)) )

return Rand2(c, parm1*parm2, Older(c));

if( E(tl) && E(t) &&

E(l) && T(c) && T(c)!=T00 && E(l) &&

E(b) && ((P(br) && P(br)!=P00) || M(br)) )

return Rand2(c, parm1*parm2, Older(c));

if( M(tl) && (D(t) || T(t)) &&

E(l) && T(c) && T(c)!=T00 &&

(P(r) && P(r)!=P00) )

return Rand2(c, parm1*parm2, Older(c));

/* dev_6: While trying to move in BOTH directions...*/

if( M(tl) && E(t) &&

M(l) && T(c) && T(c)!=T00 && P(r) && P(r)!=P00 )

return Rand2(c, parm1*parm2, Older(c));

if( M(tl) && E(t) &&

M(l) && T(c) && T(c)!=T00 && E(r) &&

E(b) && P(br) && P(br)!=P00 )

return Rand2(c, parm1*parm2, Older(c));

/* dev_8: ...or just in EITHER of them. */

if( E(tl) && E(t) && E(tr) &&

E(l) && M(c) && T(r) && T(r)!=T00 &&
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E(b) && (E(br) || T(br)) )

return Rand2(r,



}

/***************************************************************************/

/* Predicate returning state "s" if it is a P-state, and 0 if not. */

byte P(s)

byte s;

{

if (s>=Pmin && s<=Pmax) return s;

else return (byte)0;

}

/***************************************************************************/

/* Predicate returning state "s" if it is a G-state, and 0 if not. */

byte G(s)

byte s;

{

if (s>=Gmin && s<=Gmax) return s;

else return (byte)0;

}

/***************************************************************************/

/* Predicate returning state "s" if it is a K-state, and 0 if not. */

byte K(s)

byte s;

{

if (s>=Kmin && s<=Kmax) return s;

else return (byte)0;

}

/***************************************************************************/

/* If rate>0: returns state s1 "rate" times as often as s2.

If rate<0: returns state s2 "|rate|" times as often as s1.

If rate=0: returns s2.

ND: In td 99 0 T4J
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else return (byte)s1; }

}

/***************************************************************************/

/* Returns a D-star state. If PGK=1, the body of the agents has to be

considered as formed by P_G_K states. If PGK=0, the body cells are made

of the ordinary, general D-states. */

byte Dstar()

{

byte D_star, D_mutant, Rand2(), Xmin, Xmax,

get_bblock(), get_any_in_Neighb(), get_any_at_all(), get_mutant();

if( PGK )

{

if( P(l) ) { Xmin=(byte)Gmin; Xmax=(byte)Gmax;

D_star=get_any_in_Neighb(G); }

else if( G(l) )

{ Xmin=(byte)Kmin; Xmax=(byte)Kmax;

D_star=get_any_in_Neighb(K); }

else if( K(l) )

{ Xmin=(byte)Kmin; Xmax=(byte)Kmax;

D_star=get_bblock(K);

if(D_star==0) D_star=get_any_in_Neighb(K); }

}

else { Xmin=(byte)Dmin; Xmax=(byte)Dmax;

D_star=get_bblock(D);

if(D_star==0) D_star=get_any_in_Neighb(D); }

if(D_star==0) D_star=get_any_at_all(Xmin, Xmax);

D_mutant=get_mutant(Xmin, Xmax);

return Rand2(D_star, MUT_R, D_mutant);

}

/***************************************************************************/

/* Randomly choose a D-state of the parents, from the ones that

recreates in the offspring an existing, non-deleterious building blocks

in them. */

byte get_bblock(X)

byte (*X)();

{

byte X_star, bblock[4];

int i;

for(i=0; i<4; i++) bblock[i]=0;

X_star=0;

if (l==tl && (*X)(t) ) bblock[0]=t;

if (l==t && (*X)(tr)) bblock[1]=tr;

if (l==bl && (*X)(b) ) bblock[2]=b;

if (l==b && (*X)(br)) bblock[3]=br;

if( bblock[0] + bblock[1] + bblock[2] + bblock[3] > 0 )

while((X_star=bblock[random() % 4])==0);

return X_star;

}
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/***************************************************************************/

/* If no building blocks can be created again, randomly choose any of the

D-state of the parents. */

byte get_any_in_Neighb(X)

byte (*X)();

{

byte X_star, neigh_Xs[6];

int i;

for(i=0; i<6; i++) neigh_Xs[i]=0;

X_star=0;

if( (*X)(tl) ) neigh_Xs[0]=tl;

if( (*X)(t) ) neigh_Xs[1]=t;

if( (*X)(tr) ) neigh_Xs[2]=tr;

if( (*X)(bl) ) neigh_Xs[3]=bl;

if( (*X)(b) ) neigh_Xs[4]=b;

if( (*X)(br) ) neigh_Xs[5]=br;

if((neigh_Xs[0]+neigh_Xs[1]+neigh_Xs[2]+

neigh_Xs[3]+neigh_Xs[4]+neigh_Xs[5])!=0)

while((X_star=neigh_Xs[random() % 6])==0);

return X_star;

}

/***************************************************************************/

/* If there are no D-states in the parents, just get any of the

possible D-states. */

byte get_any_at_all(Xmin, Xmax)

byte Xmin, Xmax;

{

byte X_star, Rand2();

if(Xmax-Xmin==0) X_star=Xmin;

else if(Xmax-Xmin==1) X_star=Rand2(Xmin, 1, Xmax);

else X_star=(random() % (Xmax-Xmin+1)) + Xmin;

return X_star;

}

/***************************************************************************/

/* During reproduction there's always chance of a mutation to occur. */

byte get_mutant(Xmin, Xmax)

byte Xmin, Xmax;

{

byte X_mutant, Rand2();

if(Xmax-Xmin==0) X_mutant=Xmin;

else if(Xmax-Xmin==1) X_mutant=Rand2(Xmin, 1, Xmax);

else X_mutant=(random() % (Xmax-Xmin+1)) + Xmin;



/***************************************************************************/

/* Defines the amount of leftward movement for each kind of head,

AFTER the agent HAS TRIED to move in BOTH directions.

It returns the rate at which an agent will make an attempt to move

leftwards, independently of the diagonal movement. */

int L_MV_CONF(s)

byte s;

{

byte TL(), TD();

if (TL(s)) return MAXINT;

else if (TD(s)) return 0;

else return 1;

}

/***************************************************************************/

/* Defines the amount of diagonal movement for each kind of head,

AFTER the agent HAS TRIED to move in BOTH directions.

It returns the rate at which an agent will make an attempt to move

diagonally, independently of the leftward movement. */

int D_MV_CONF(s)

byte s;

{

byte TL(), TD();

if (TL(s)) return 0;

else if (TD(s)) return MAXINT;

else return 1;

}

/***************************************************************************/

/* Defines the amount of leftward movement for each kind of head, by

returning the rate at which an agent will make an attempt to move

leftwards, independently of the diagonal movement.

With all cases returning 1, it means that an attempt to move in either way

is equally likely to not making an attempt at all (i.e., M or 0 have the same

probability). The existence of these new routines is handy

because they allow to control the movement rates in each direction

independently; it is even possible to approach the deterministic case

in which, for example, TD would always move diagonally except when the

only possibility is the leftward movement. */

int L_MV(s)

byte s;

{

byte TL(), TD();

if (TL(s)) return MAXINT;

else if (TD(s)) return MAXINT;

else if(s==T00) return 0; /* T00 is immobile */

else return 1;

}
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/***************************************************************************/

/* Defines the amount of diagonal movement for each kind of head, by

by returning the rate at which an agent will make an attempt to move

diagonally, independently of the leftward movement. */

int D_MV(s)

byte s;

{

byte TL(), TD();

if (TL(s)) return MAXINT;

else if (TD(s)) return MAXINT;

else if(s==T00) return 0; /* T00 is immobile */

else return 1;

}

/***************************************************************************/

/* Predicate returning T-state "s" if it moves leftwards, and 0 if not. */

byte TL(s)

byte s;

{

if( s>=TLmin && s<=TLmax ) return s;

else return (byte)0;

}

/***************************************************************************/

/* Predicate returning T-state "s" if it moves diagonally, and 0 if not. */

byte TD(s)

byte s;

{

if( s>=TDmin && s<=TDmax ) return s;

else return (byte)0;

}

/***************************************************************************/

/* An agent gets older according to the following "ageing" sequence:

TLmin (=Tmin) --> TL(1) ---> ... ---> TL(n) --> TLmax --> 0

TDmin (=TL+1) --> TD(1) ---> ... ---> TD(n) --> TDmax --> 0

*/

byte Older(s)

byte s;

{

if( (s>=TLmin && s<TLmax) ||

(s>=TDmin && s<TDmax) ) return (byte)(s+1);

else if( (s==TLmax || s==TDmax) && DEATH) return (byte)0;

else return s;

}

/***************************************************************************/
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/*

*/

byte Dev_T(s)

byte s;

{

byte TL();

switch(s)

{

case 9: return TL(c) ? (byte)TLmin : (byte)TDmin;

case 10: return TL(c) ? (byte)TLmin : (byte)TLmin;

case 11: return TL(c) ? (byte)TDmin : (byte)TDmin;

case 12: return TL(c) ? (byte)TDmin : (byte)TLmin;

}

}

/***************************************************************************/
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Appendix C

Codi�cation of the State Transition Table of the Turing

Machine Implemented in Chapter 4

What follows is the list of state transitions in Enact that are necessary to code for

Table 4.2, the state transition table of the Turing machine implemented in Chapter 4.

The notation being used is explained in Appendix A.

C.1 State Transition Establishing the End of the Computation
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Appendix D

Details of the Implementation of the Turing Machine

Described in Chapter 5

D.1 State Transitions Used for the TM Machinery

Tables D.1 and D.2 present the state transitions required to implement, respectively, the

\hardwired" machinery of the Turing machine, and the \software" that implements a

particular function being computed, as de�ned by its state transition table. The cells

marked with the symbol # mean that their state is irrelevant in these neighbourhoods.

The subscript def refers to the default value used in Enact. The subscripts r and br

refer to the geographic position of the cell in its neighbourhood. The background state is

represented by 0.

Table D.2 is horizontally divided into two sections, the one on the top referring to the

state transition of the TM, and the second accounting for the movement of the head and

the manipulation of the tape symbols.

In both tables all occurrences of E

LR

are related to the occurrence of E

LR

. This is

a consequence of the fact that, by default, the agents move leftwards, and therefore the

neighbourhood required for the actions of E

LR

corresponding to (�;�;�) are the same

one required for E

LR

.

For present purposes the second collumn in both tables is simply a reference to the kind

of state transition that appears at each row, or to the original (built-in) state transition

from which the state transitions of the �rst collumn are an instance of. More details

about this aspect can be found in Subsection 4.3.2.

D.2 Movement of the Agents

While the preceding section was meant to provide additional details of the implementation

of the TM machinery, the current one gives details of the implementation of the agents,

with respect to the nature of their movement in the cellular space. This is an important

aspect, because a correct computation can only be performed provided the agents move

in certain ways, inuenced by each other. This is the only criterion to be followed.

Evidently, there are several possibilities to meet that requirement. In the present

implementation we imposed that at least some of the agents should be allowed to change

their direction of movement from time to time. The actual details of how they should

change is partly expressed in Tables D.3, D.4 and D.5. Additionally, Figure D.1 depicts

the way the heads of the agents are modi�ed as a result of the environmental interactions.

One can note in that �gure that even when an agent is moving over a free background its

direction of movement is allowed to change.
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State Transitions Supporting the Hardware Instantiated Role
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Table D.1: State transitions supporting the actions of the Turing machine that do not

depend on the state transition table of the function being computed.
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Figure D.1: State transitions specifying the way the heads of the agents are modi�ed as

a result of the environmental interactions. The states the transitions lead to are made

explicit in Table D.5.
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State Transitions Supporting the Software Instantiated Role
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Table D.2: State transitions supporting the actions of the Turing machine that are de�ned

by the state transition table of the function being computed.
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7! T

i

P

0

T

L

P

1

T

L

P

2

T

L

P

3

T

D

P

f

T

D

Table D.4: Neonate development from T

0

to T

i

.

T

i

7! T

ii

P

ii

T

L

T

D

P

0

T

L

T

L

P

1

T

D

T

D

P

2

T

D

T

L

P

3

T

D

T

L

P

f

T

L

T

D

Table D.5: Development of the heads of the agents according to their P

ii

- and T

i

-states.

The head is inactive for P

f

, and active otherwise.
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