
A Fully Abstract Denotational Model for

Higher{Order Processes

�

M. Hennessy

University of Sussex

Abstract

A higher{order process calculus is de�ned in which one can describe processes

which transmit as messages other processes; it may be viewed as a generalisation of

the lazy �-calculus. We present a denotational model for the language, obtained by

generalising the domain equation for Abramskys model of the lazy �-calculus. It

is shown to be fully abstract with respect to three di�erent behavioural preorders.

The �rst is based on observing the ability of processes to perform an action in

all contexts, the second on testing and the �nal one on satisfying certain kinds of

modal formulae.

�

This work has been supported by the SERC grant GR/H16537

1



1 Introduction

Process algebras are simple speci�cation languages for concurrent communicating pro-

cesses. Typically they consist of a small number of combinators for constructing new

processes from existing processes and their meaning is then determined by a collection

of laws or equations expressed in terms of these combinators. For example CCS, [Mil89],

contains a parallel and a choice combinator, j and + respectively. The term p j q de-

scribes a process which consists of two subprocesses p and q running in parallel while

p + q describes a process which may either act like p or like q but not both. It also

contains a set of pre�xing combinators, one for each action from some prede�ned action

set. The term c:p is a process which can perform the action c and then proceed to

act like the process p. These actions may be interpreted in a variety of ways but typi-

cally they represent the sending or receipt of data along some communication channel

and communication is modelled by the simultaneous occurrence of a send and a receive.

Combinators similar in style to these appear in most process algebras as does some form

of scoping for channel names. Indeed it is this last concept which gives them much of

their descriptive power.

The underlying mathematical theory of these languages is well-developed and fairly

well understood, [Mil89, Hoa85, BW90, Hen88]. Much of this fundamental work has

been carried out for \pure" process algebras, where the actions are taken to be simple

synchronisation pulses along channels, but more recently theories have been developed for

languages where various kinds of data are passed along the communication channels. For

example in [HI91] simple data values such as the integers are allowed while in [MPW92a,

MPW92b] channels themselves are allowed. In [Tho89, Tho90] processes may pass other

processes as values and it is this type of process description language which is the topic

of the present paper.

There are now two kinds of pre�xing, c?X:P , meaning input a process along the

channel c and bind it to the process variableX in the term P , and c!Q:P , meaning output

the process Q along the channel c and then act like the process P . Thus c?X:(X j R)

represents a process which can input any process and run it in parallel with R. So

combining this with c!Q:P we obtain the process c!Q:P j c?X:(X j R) which can

perform a communication to become the process P j (Q j R). This idea is pursued

in depth in [Tho90] where a number of di�erent formalisations are investigated. The

resulting language is shown to be very powerful in that it can simulate, in some sense,

both the �-calculus and the �-calculus of [MPW92a]. The connection between the �-

calculus and various higher{order process calculi and their relative merits is further

pursued in [San92]. Here we do not address such issues. Rather we investigate the

possibility of providing an adequate semantic theory for higher{order process calculi.

In particular we provide a fully abstract denotational model for one such higher{order

language.

The starting point for the development of this model is the lazy �-calculus. At a very

naive level this is a primitive higher-order process language. The �-term �xd
[(sim)99Qbstractcalculiand their are and



F = D �! D

Each �-term is interpreted either as ?, in the case when it gives rise to a divergent

computation, or as an element of F, i.e. a function over �-terms. A higher-order process

can be viewed as having similar behaviour but now parametrised on channels; �-terms

being simple processes which can only receive input on one channel. Thus the input

behaviour of a higher{order process, in analogy with �-terms, can be captured by a

function from N , the set of channel names, to F

?

; with respect to each channel the

process may o�er no behaviour, modelled by ?, or may act like a function over processes.

Similarly its output behaviour, which has no real counterpart in the �-calculus, can be

modelled as a function from N to C

?

, where C is some space suitable for modelling

output. One simple suggestion for C is the Cartesian product D�D, with the elements

of the pair representing, respectively, the process sent along the channel and the residual

of the output action. We shall see that a slightly more complicated form of product is

actually necessary, which we denote by C


r

C.

The analogy



In [Abr90] it is shown that, subject to certain expressivity requirements, the domain D

is fully abstract with respect to the observational preorder

<

�

O

. That is, p

<

�

O

q if and

only if the interpretation of p in the domain D is dominated by the interpretation of q;

the domain properly reects the ability of �-terms to act like functions. A similar result

holds for the the nondeterministic or parallel version of the �-calculus of [Bou90a, Bou91]

but p + is interpreted as it is possible for p to converge to a functional term, although

in these papers a di�erent phraseology is used.

Viewing the �-calculus as a primitive higher{order process calculus p + can be inter-

preted as: p is willing to o�er a communication on the communication channel �. So

let us generalise this predicate + to arbitrary processes from our higher{order process

calculus by de�ning

p + if there exists some channel on which p is willing to o�er a communication

The main result of this paper is that, subject once more to expressivity requirements,

the model P is fully-abstract with respect to the observational preorder

<

�

O

, with this

new interpretation of +. That is, the interpretation of the process p in the domain P is

dominated by that of q if and only if for every context C[ ] if C[p] is willing to o�er a

communication on some channel then so is C[q].

We also prove full abstraction for two other observational preorders between processes

and both can also be motivated by reference to similar results for the lazy �-calculus.

The ability to examine a �-term in an arbitrary context gives one complete control over

that term; the context can for example send the term to a collection of subterms each

of which can examine an aspect of its behaviour and then pass it on to other subterms

for further examination. However each of these subterms can only use the term under

examination in a limited manner: they can only supply an argument for the term to be

applied to. So a simpler behavioural preorder may be de�ned on �- terms based on their

reaction to a sequence of arguments:

p

<

�

T

q if (: : : (pr

1

) : : : r

n

) + implies (: : : (qr

1

) : : : r

n

) + for every sequence of

�-terms r

1

; : : : ; r

n

.

The model D is also fully abstract with respect to this preorder, i.e.

<

�

O

and

<

�

T

coincide over �-terms. This view of �-terms treats them as \black boxes". One has no

control over them; the only way of �nding out about their behaviour is to send them a

parameter, i.e. communicate with them. This is very similar in spirit to the theory of

testing for processes, originally presented in [DH84] and expounded at length in [Hen88].

There a test e (represented as another process) is applied to a process p by running e and

p in parallel, thereby allowing them to communicate, and the application is successful if

e reaches some \successful" state. The test e may be viewed as a generalisation of the

sequence of parameters r

1

; : : : r

n

supplied to the �-term and the successful state plays

the role of +. So let us generalise

<

�

T

to higher-order processes by saying p may satisfy

the test e if there is a successful application of e to p and

p

<

�

T

q if p may satisfy e implies q may satisfy e for every test e.

We show that P is also fully abstract with respect to

<

�

T

.

The full abstraction results in [Abr90, Bou91] rely heavily on a logical characterisation

of the domainD, [CC90, Abr91]. Essentially the compact elements ofD can be described

4



by formulae from a logic in such a way that D is isomorphic to the �lters generated by

the logic. Further the interpretation of the �-calculus in D can be completely captured

by a program logic whose judgements are of the form ` p



� P

�

�! Q: This means



be prime algebraic if for every d 2 D

d =

_

f c 2 KP(D) j c � d g:

In this paper we use domain to mean a prime algebraic lattice. Note that every

domain D has a least element ? =

W

; and a greatest element > =

W

D. Also every

compact element c is the join of a �nite number of primes, c = p

1

_ : : : _ p

n

.

A function f :D 7�! E between two domains is strict if f(?) = ?, monotonic if

d � d

0



Thus for continuous functions f = g if and only if f

c

= g

c

and similarly for multilinear

functions. It follows that in order to de�ne a continuous (multilinear) function it is

su�cient to de�ne it on the compact (prime) elements.

We now review briey the constructions of domains which are required in the paper;

most are standard. For any set N let (N �! E) be the set of all functions from N

to the domain E. These functions are ordered in the standard way, namely f � g if

f(n) � g(n) for every n in N . With this ordering (N �! E) is a domain where the

primes are all those functions f whose range is KP(E) and which return ? for all but

at most one element of N .

Let [D �! E] be the set of continuous functions from the domain D to the domain E.

This, ordered in the standard way, can also be seen to be a domain where the primes

are step functions of the form c) p for c 2 K(D) and p 2 KP(E). Recall that the step

function d) e is de�ned by

d) e(x) =

(

e d � x

? otherwise.

The Cartesian product D � E also yields a domain as does the \lifting operation" D

?

.

We use d

?

to denote the element in

?

(d) of D

?

where in

?

:D 7�! D

?

is the natural

injection.

The most complicated construction we require is a form of tensor product. In the

Cartesian product D

1

� D

2

the join is de�ned pointwise: (d

1

; d

2

) _ (d

0

1

; d

0

2

) = (d

1

_

d

0

1

; d

2

_ d

0

2

). This implies (d; d

1

_ d

2

) = (d; d

1

)_ (d; d

2

) and (d

1

_ d

2

; d) = (d

1

; d)_ (d

2

; d).

To model concretions, as outlined in the introduction, we require a product where the

former identity remains true but in general (d

1

_ d

2

; d) is di�erent from (d

1

; d) _ (d

2

; d).

This is de�ned in the following way. A continuous function f :D

1

�D

2

7�! E is called

right-linear if f(d

1

; d

2

_ d

0

2

) = f(d

1

; d

2

) _ f(d

1

; d

0

2

). For any two domains D

1

;D

2

let

D

1




r

D

2

be the domain characterised by the requirements

1. there exists a right-linear injection i




r

:D

1

�D

2

7�! D

1




r

D

2

2. for any right-linear f :D

1

�D

2

7�! E there exists a unique linear f




r

:D

1




r

D

2

7�!

E which makes the following diagram commute:

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

-

?

i




r

f




r

f

D

1




r

D

2

E

D

1

�D

2

Of course we have to show that such a D

1




r

D

2

exists. A standard \arrow-chasing"

argument will establish that if it exists it is unique (up to isomorphism) and we con-

tent ourselves with outlining the construction of one domain with both of the required

properties.

In fact to construct D

1




r

D

2

it is su�cient to de�ne its prime elements. Let

P = f (c; p) j c 2 K(D

1

); p 2 KP(D

2

) g

8



and let (c; p) � (c

0

; p

0

) if c �

D

1

c

0

and p �

D

2

p

0

. This is a ppo with a least element and

we let D

1




r

D

2

be P

l

(P ). Let i:K(D

1

�D

2

) 7�! D

1




r

D

2

be de�ned by

i(c

1

; c

2

) = f (c

1

; p

i

) j c

2

= p

1

_ : : : _ p

n

g

where we identify Fin(P ) with its injection into D

1




r

D

2

. Note that this is well de�ned

for if p

i

; q



where Aux is a set of auxiliary operators. In this paper we use a particular set of such

operators which are de�ned as follows:

1. parallelism

for each pair of subsets, A;B of N , a binary in�x parallel operator

A

j

B

2. renaming

for each function r from N to N which is almost everywhere the identity a unary

post�x renaming operator frg

In (X)T the pre�x (X) acts as a binder for occurrences of X in T and this leads to

the standard notion of free and bound occurrences of variables, �-conversion and of

substitution: TfU=Xg stands for the term obtained by substituting all free occurrences

of X in T by U where as usual the bound variables in T are renamed via �-conversion if

necessary so that no free variables in U are captured. More generally if � is a substitution,

i.e. a mapping from X to terms of type process, T� denotes the result of replacing all

free occurrences of each X in T by �(X). We use process to mean a closed process{term

from this language and P;Q; : : : are used to denote typical processes.

The language may be considered as an extension of CHOCS, [Tho90]. The CHOCS

processes a?X:P; a!P:Q are represented here by a?(X)P; a![P ]Q respectively, the parallel

CHOCS term P j Q by P

N

j

N

Q and the restriction Pna by P

A

j

N

NIL whereA = N�fag.

So informally we shall view CHOCS via this representation as a sublanguage.

The operational semantics of the language is given in Figure 1 where for convenience

we have omitted the symmetric counterparts to the Choice and Parallelism rules and

the function name used in the latter has the obvious de�nition. There are three types

of judgements, of the form

P

n?

�! F

P

n!

�! C

P

�

�! Q;

where P and Q are processes, F is a closed abstraction term and C a closed concretion

term. The relations

n?

�! and

n!

�! describe the communication capabilities of processes

while

�

�! describes the a�ect of an actual communication; P�





Here Q is not governed by the restriction but the e�ect of the communication is to

transform the process into

(X)((X j P )nA)Q j R

Because of the operational semantics of function application this has exactly the same

behaviour as

(Q j P )nA j R

where now all occurrences of channels from A in Q are considered local.

Based on this operational semantics we give three di�erent behavioural equivalences

or preorders. The �rst is motivated from the view of the lazy �-calculus advocated in



distinguishes between them. Processes are considered to be independent entities or

\black boxes" and a test consists of a series of interactions between the process and

the tester which continue until such time as the the tester reaches what it considers

to be a



di�erent areas of research. On the one



sequences are necessary in the constructions [�] and �!  . For consider P

2

; Q

2

de�ned

by m![ n! + k! ]NIL and m![ n! ]NIL +m![ k! ]NIL respectively. Then P

2

j=

O

� if and

only if Q

2

j=

O

� for every � not using sequences but P

2

6<

�

L

Q

2

.

The modal language is in fact determined by a denotational model which provides a

crucial link in establishing the equality between the behavioural preorders. The model

and the denotational interpretation of the language in it is described in the next two

sections. We then show that this model is fully abstract with respect to the three be-

havioural preorders.

4 The Model

Consider the domain equation

P = (N �! C

?

)� (N �! F

?

) Processes

F = [P �! P] Abstractions

C = P


r

P Concretions

Intuitively this models a process using two



Proof: By calculation. 2

These domains are completely determined by their primes which we now proceed to

describe. For A = P;F;C respectively, let A

KP

be the least subsets of A satisfying

1. ? 2 A

KP

2. c



General :

Re � � �

Weak

� �  

�; �

0

�  

Trans

� �  ;  � �

� � �

Processes :

LP

1

� � !

LP

2

� �  

hci� � hci 

Abstractions :

LF

1

� � (! ! !)

LF

2

� � �

0

;  �  

0

�



de�ning a map [[ ]]:L

A

7�! KP(A). Then the statement L ` � �  may be interpreted

semantically as saying that [[ ]] is dominated by the element [[�

1

]] _ : : : _ [[�

k

]] and since

[[ ]] will be a prime this means that there is some i such that [[ ]]� [[�

i

]]. For convenience

we use [[�]] to denote [[�

1

]] _ : : : _ [[�

k

]].

De�nition 4.3

Processes : [[!]] = ?

[[hn!i�]] = n

out

([[�]])

[[hn?i�]] = n

in

([[�]])

Abstractions : [[�!  ]] = [[�]]) [[ ]]

Concretions : [[[�] ]] = [[�]]


r

[[ ]]

2

Using this interpretation

Theorem 4.4 For A = P; C; F respectively

1. The map [[ ]]:L

A

7�! KP(A) is surjective, i.e. for every p 2 KP(A) there exists a

formula � 2 L

A

such that [[�]] = p

2. L ` � �  if and only if [[ ]] � [[�]].

Proof: It is straightforward to show by induction that for every p 2 A

KP

there exists

a formula � 2 L

A

such that [[�]] = p. For example if p has the form n

in

(f) and is in P

KP

because f 2 F

KP

then by induction we may assume that the exists a  2 L

F

such that

[[ ]] = f . It follows that [[hn?i ]] = p.

The proof that L ` � �  implies [[ ]] � [[�]] is equally straightforward. It proceeds

by induction on the proof of � �  and this immediately implies the corresponding

result for vectors, namely if L ` � �  then [[ ]] � [[�]]. We prove the converse and it

is su�cient to prove [[ ]] � [[�]] implies L ` � �  . For suppose we have established

this and that [[ ]] � [[�]]. This means that [[ 

i

]] � [[�]] for each i and since [[ 

i

]] is prime

this implies [[ 

i

]] � [[�

j

]] for some j. Applying the result we obtain L ` �

j

�  

i

and by

the rule weakening L ` � �  

i

. Since this is true for each i it follows by de�nition that

L ` � �  .

The proof that [[ ]] � [[�]] implies L ` � �  proceeds by induction on the structure

of  .

1.  = !

Use Rule LP

1

2.  = hn?i�

Note that since [[ ]] � [[�]] it follows that � must be of the form hn?i�; otherwise

[[�]](n?) = ? and so [[�]] would not dominate [[ ]]. Moreover it is easy to check

that [[�]]� [[�]] and therefore by induction L ` � � �. Then using the rule LP

2

we

obtain the required L ` � �  .

The case when  = hn!i� is similar.

3.  = [ 

1

] 

2

Let � have the form [�

1

]�

2

. So [[ 

1

]] 


r

[[ 

2

]] � [[�

1

]] 


r

[[�

2

]] and since i




r

is

18



injective it follows that [[�

1

]] � [[ 

1

]] and [[�

2

]] � [[ 

2

]]. We can apply induction to

obtain L ` �

1

�  

1

and L ` �

2

�  

2

and an application of the rule LC

1

yields

L[�

1

]�

2

� [ 

1

] 

2

.

4.  =  

1

!  

2

Let � have the form �

1

! �

2

. So we have [[ 

1

]]) [[ 

2

]] � [[�

1

]]) [[�

2

]]. There are

two cases to consider

(a) [[ 

2

]] = ?.

Every formula other than ! has a non-trivial interpretation and therefore

 

2

must be !. From the rule LF

1

we have �

1

! �

2

� ! ! ! while the

rules LF

2

; L



5 The Interpretation of the Language

Using the model of the previous section we may interpret the language in a standard

fashion. Let ENV be the set of environments, i.e. mappings from X to P, ranged over

by �. Then for each term T of type A we de�ne [[T ]]

A

: ENV 7�! A as follows:

� [[NIL]]

P

� = ?

� [[n?F ]]

P

� = n

in

([[F ]]

F

�)

� [[n!C]]

P

� = n

out

([[C]]

C

�)

� [[X]]

P

� = �(X)

� [[T + U ]]

P

� = [[T ]]

P

� _ [[U ]]

P

�

� [[FT ]]

P

� = [[F ]]

F

�([[T ]]

P

�)

� [[(X)T ]]

F

� = �d 2 P:[[T ]]

P

�[X 7! d]

� [[[T ]U ]]

C

� = [[T ]]

P

� 


r

[[U ]]

P

�

� [[G(T )]]

P

� = g([[T ]]

P

)

where for each auxiliary function symbol G we have a corresponding function g of

the appropriate type.

To complete the interpretation we need to de�ne the functions corresponding the function

symbols in Aux. To do so it is convenient to introduce some notational conventions.

The �rst concerns the \lifting" operation. Suppose t(x) is a meta-expression involving

the variables x with the property that t(v) 2 E for all values v

i

from a set E

i

. Then if

w

i

2 E

i

?

; t(w) denotes the value in E

?

determined by

t(w) =

(

? if 9i:w

i

= ?

t(v) otherwise where w

i

= (v

i

)

?

The second convention is a convenient way of describing functions over tensor products.

Let �(d

1

; d

2

) 2 D

1

� D

2

:t represent a right-linear function in [D

1

� D

2

�! E]. Then

we use �




r

(d

1

; d

2

) 2 D

1

�D

2

:t to represent its unique extension to a linear function in

[D

1




r

D

2

�! E].

The most di�cult function to de�ne is that corresponding to the parallel operator

A

j

B

. Informally the de�nition simply mimics the usual interleaving interpretation of

parallelism. Formally it takes the form Y Par

A;B

where Y is the least �xpoint operator

and Par

A;B

is a function of type [P � P �! P] �! [P � P �! P]. Intuitively

if F is of type P � P �! P then Par

A;B

F , when applied to two processes x and

y calculates the resulting process by \unioning" together three di�erent components.

The �rst considers possible moves from x and calculates their residuals by applying F

recursively, the second does the same for y while the third calculates the possible results

of communication between x and y using any channel in N . Formally Par

A;B

F (x; y) is

20



de�ned by

W

m2A

m

in

�d 2 P:F (x(m?)d; y)

_m

out

( �




r

(d; d



k




r

y_y

0

= k




r

y

_ k




r

y

0

. Therefore

f

m

out

(x; y _ y

0

) = k




r

y_y

0

x(m!)

= k




r

y

x(m!) _ k




r

y

0

x(m!)

= f

m

out

(x; y) _ f

m

out

(x; y

0

):

� com

m

l

is multilinear.

Here let k

z

denote the function �(d; d

0

) 2 P�P:F (z(m



� � �

A

j

B

�

! ! !

! hci(�) f!g

[ f hci(�)� j � 2  ; c 2 B g

hn?i�!  hm?i�

0

!  

0

f!g

[ f hn?i� ! � j � 2  

A

j

B

�; n 2 Ag

[ f hn?i! ! � j � 2 !

A

j

B

�; n 2 Ag

[ f hm?i�

0

! � j � 2 �

A

j

B

 

0

; m 2 B g

[ f hm?i! ! � j � 2 �

A

j

B

!; m 2 B g

hn!i[�] hm!i[�

0

] 

0

f!g

[f hn!i[�]� j � 2  

A

j

B

�; n 2 Ag

[f hm!i[�

0

]� j � 2 �

A

j

B

 

0

; m 2 B g

hn?i�!  hm!i[�

0

] 

0

f!g

[ f hn?i� ! � j � 2  

A

j

B

�; n 2 Ag

[ f hn?i! ! � j � 2 !

A

j

B

�; n 2 Ag

[ f hm!i[�

0

]� j � 2 �

A

j

B

 

0

; m 2 B g

[ f � j � 2 !

A

j

B

 

0

; m = n g

[ f � j � 2  

A

j

B

 

0

; L ` �

0

� �; m = n g

Figure 3: The Parallel Operator on Formulae

Proof: For each G the proof proceeds by structural induction on �. As an example we

consider one case for the parallel operator: we show [[�

A

j

B

�]] = [[�

A

j

B

�]] when �; � are

hn?i� !  ; hm!i[�

0

] 

0

respectively in the case when n is in A, m is in B and m = n.

As in the proof of Theorem 5.1 we may introduce some notation by writing x

A

j

B

y

as

W

k2A

k

in

f

k

in

(x; y) _ k

out

f

k

out

(x; y)

W

k2B

k

in

g

k

in

(x; y) _ k

out

g

k

out

(x; y)

W

k2N

com

k

l

(x; y) _ com

k

r

(x; y):

In this case for each k [[�]](k!) = [[�]](k?) = ?. This means in turn that

f

k

out

([[�]]; [[�]]) = g

k

in

([[�]]; [[�]]) = com

k

r

([[�]]; [[�]]) = ? and that for every k di�erent from

n com

k

l

([[�]]; [[�]]) = ?. Therefore [[�]]

A

j

B

[[�]] can be simpli�ed to

n

in

f

n

in

([[�]]; [[�]])_m

out

g

n

out

([[�]]; [[�]])_ comm

m

l

([[�]]; [[�]]):

Let us also rewrite [[�

A

j

B

�]] to a convenient form. Because of the linearity of the pre�xing

functions n

in

; m

out

it may be written as

n

in

[[S

11

]]_ n

in

[[S

12

]]_m

out

[[S

2

]] _ [[S

3

]] _ [[S

4

]]

23



where

S

11

= f�! � j � 2  

A

j

B

� g

S

12

= f! ! � j � 2 !

A

j

B

� g

S

2

= f [�]� j � 2 �

A

j

B

 

0

g

S

3

= f � j � 2  

A

j

B

 

0

; L j= �

0

� � g

S

4

= f � j � 2 !

A

j

B

 

0

g

To prove the result it is therefore su�cient to establish

f



There are



� � 2  

A

j

B

 

0

and L ` �

0

� �

As in the previous case we know P

1 A

j

B

P

2

�

=) FQ

1 A

j

B

Q

2

for some F;Q

1

and Q

2

such that F j=

O

� !  , Q

1

j=

O

�

0

and Q

2

j=

O

 

0

. We are assuming L ` �

0

� �

and therefore, again by Proposition 4.6, Q

1

j=

O

� which implies in turn that

FQ

1

j=

O

 . As in the previous case the result now follows by induction.

2

We end this section with a de�nability theorem: every prime, and therefore compact

element, in P is de�nable by a term on our language. For each formula � we construct

a set of processes P

n;i

, parameterised on pairs of distinct names n; i, and a set of closed

abstraction terms F

n;i

, parameterised in the same manner, such that if n; i does not

appear in � then

� [[P

n;i

�

]] = [[�]]

� for all d 2 P; [[n!]] = [[F

n;i

�

]]d if and only if [[�]]� d.

Moreover the abstractions F

n;i

have the form (X)(T

n;i

�

fng

j

;

X) for some process T

n;i

�

so

that its application to a process is in fact the application of the test T

n;i

�

. In order to

de�ne these terms we need some notation. For any pair of process terms T; U and name

n let T �

n

U denote the term T

;

j

N�fng

n?(Y )U where U does not occur free in U . If

Y

1

; : : : ; Y

k

is a sequence of distinct variables let con

n;i

[Y

1

; : : : ; Y

k

] denote the term

Y

1

[n! i](�

i

Y

2

[n! i](�

i

: : : (�

i

Y

k

) : : :))

where [n ! i] is the renaming which sends n to i and is the identity elsewhere. Note

that if k = 1 then C[Y

1

] is simply Y

1

. We also use Tnn to denote the term NIL

;

j

N�fng

T

and �nally let W

n

be the set consisting of two semantic elements, f?; [[n!]]g. We leave

the reader to check the following:

Lemma 5.4 1. If [[P

i

]] 2 W

n

then [[ con

n;i

[P

1

; : : : ; P

k

]]] 2 W

n

2. If n does not occur in � then [[�]]nn = [[�]]: 2

The de�nition of the required terms is by induction on the structure of formulae:

� !

P

n;i

�

= ? and F

n;i

�

= (X)(n!

fng

j

;

X)

� hm?i�

and therefore, again



Theorem 5.5 (De�nability) For any n; i not occurring in �

1. for all d 2 P; [[n!]] = [[F

n;i

�

]]d if and only if [[�]] � d

2. [[P

n;i

�

]] = [[�]]

3. for all d 2 P; [[F

n;i

�

]]d 2 W

n

4. [[T

n;i

�

]]ni = T

n;i

�

.

Proof: By structural induction on formulae. As an example we consider the case when

� is the formula hm!i[�



particular j. By induction we have that [[n!]] = [[F

n;i

�

l

]]p

j

for each l and therefore,

by calculation, [[n!]] = [[F

n;i

�

]]p

j

. So

[[F

�

]]d � [[i!]]�

i

[[T

n;i

 

]]

fng

j

;

q

j

= ([[T

n;i

 

]]ni)

fng

j

;

q

j

= [[T

n;i

 

]]

fng

j

;

q

j

; by induction, part 4

= [[n!]]; by induction

2. obvious by induction

3. By induction we know that [[F

n;i

�

j

]]d 2 W

n

for each j and it follows by the previous

Lemma that [[F

n;i

�

]]d 2 W

n

. So [[F

n;i

�

]]d has the form g �

i

[[T

n;i

 

]]

fng

j

;

d where g 2 W

i

.

If g is ? then obviously this also reduces to ? which is in W

n

. Otherwise g must

be [[i!]] in which case it reduces to ([[T

n;i

 

]]ni)

;





General :

LR

� `

a

A : �; L ` � �  

� `

a

A :  

Processes :

NR �[X 7! �] `

p

X : �

i

!R � `

p

T : !

PreR

� `

f

F : �

� `

p

n?F : hn?i�

� `

c

C : �

� `

p

n!C : hn!i�

JoinR

� `

p

T : �

� `

p

T + U : �

� `

p

T : �

� `

p

U + T : �

ApR

� `

f

F : �!  ; � `

p

T : �

� `

p

FT :  

AuxR

� `

p

T

i

: �

i

; L ` G(�) �  

� `

p

G(T ) :  

Abstractions :

FunR

�[X 7! �] `

p

T :  

� `

f

(X)T : �!  

Concretions :

ConR

� `

p

T : �; � `

p

U :  

� `

c

[T ]U : [�] 

Figure 4: The program logic

1. FT

Suppose [[ ]]� [[FT ]]�

�

= [[F ]]�

�

([[T ]]�

�

) where F has the form (X)U . Then

[[ ]] � (�d 2 P:[[U ]](�

�

[X 7! d]))([[T ]]�

�

)

= [[U ]]�

�

[X 7! [[T ]]�

�

]

=

_

f [[U ]]�

�

[X 7! c] j c � [[T ]]�

�

g

30



Since [[ ]] is compact there exists some c � [[T ]]�

�

such that [[ ]] � [[U ]]�

�

[X 7! c].

Moreover there is a �nite set � such that c = [[�]] in which case �

�

[X 7! c] =

�

�[X 7!�]

. So [[ ]] � [[U ]]�

�[X 7!�]

and by induction �[X 7! �] ` U :  . Applying the

rule FunR we obtain � ` (X)U : (� !  ). Also [[�

i

]] � [[T ]]�

�

for each �

i

and so

by induction � ` T : �

i

. An instance of the application rule now gives � ` FT :  .

2. G(T )

Suppose [[ ]] � [[G(T )]]�

�

= G([[T ]]�

�

). Since [[ ]] is prime and G is multilinear

there exists a vector of primes p such that p

i

� [[T

i

]]�

�

and [[ ]] � G(p). Let p

i

be denoted by �

i

. Then [[ ]] � G([[�

1

]]; : : : ; [[�

k

]]) = [[G(�)]]. By the completeness

of L we have L ` G(�) �  and since ). Also [[ `and since ).



If � is a closed substitution we write � j=

O

� if for every X 2 X �(X





8 Conclusions

We have presented a semantic model of higher{order processes and shown it to be fully

abstract with respect to a number of observational preorders. But these results raise

many questions, some quite speci�c about our technical development and others more

general.

It has been shown in [San92] that higher{order process languages can be simulated

in the �-calculus but this is not to say that such languages are superuous. They

may provide convenient speci�cation formalisms at an appropriate level of abstraction

for describing the behaviour of sophisticated systems such as distributed operating or

control systems, [LB92]. If this is the case then what kind of combinators should such

a language have and can we model them using this semantic domain? Another question

concerns the channel scoping mechanism used in the language. As we have seen P is

adequate for



This leads to a behavioural theory which in general di�erentiates between processes

of the form a:P; a:P + a:NIL and a:P + a:
. It remains to be seen if fully abstract

denotational models can be constructed for these theories.

Higher{order process calculi have been studied in a number of papers. In [Tho89,

Tho90] the language CHOCS, on which our language is based, and a statically scoped

version called Plain CHOCS are studied in detail. The theory of strong bisimulation

equivalence is developed for these languages along the lines outlined in [AAR88] and

a denotational model for CHOCS is presented which is fully abstract with respect to

a modi�ed version of strong bisimulation equivalence. Higher{order process calculi are

also studied in [San92] where the main concern is their relationship with the �-calculus.

In [Bou89] a generalisation of the �-calculus, called the -calculus, is de�ned in which

a form of parallelism is allowed. A very restricted subset of this language is modelled

in [JP90] using a new form of powerdomain construction. This model is shown to be

adequate with respect to an operational semantics but it is not known if it is fully

abstract. The addition of parallelism to the �-calculus is studied extensively in [Bou90b,

Bou91]; in particular fully-abstract models, �lter models of logics, are constructed for

the observational preorder over parallel-�-terms. More recently Boudol has developed a

language of communicating objects, [Bou92], for which he has obtained similar results.

This language bears some similarity with our higher{order process language and the

exact relationship warrants further investigation.

Other approaches to higher{order processes may be found in [AR87, GMP90, Nie89].

The overall aim of this work is the development of more realistic higher{order program-

ming languages which contains among other things a sophisticated type structures for

the values transmitted between processes.

Acknowledgements: Thanks to Gerard Boudol for his detailed comments on a �rst

draft of this paper.

References

[AAR88] E. Astesiano, A.Giovini, and G. Reggio. Generalised bisimulation in rela-

tional speci�cations. In Proceedings of STACS 88, volume 294 of Lecture

Notes in Computer Science, pages 207{226, 1988.

[Abr90] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research

Topics in Functional Programming, pages 65{117. Addison-Wesley, 1990.

[Abr91] Samson Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic,

51:1{77, 1991.

[AO89] S. Abramsky and C. Ong. Full abstraction in the lazy lambda calculus.

Information and Computation, 1989. to appear.

[AR87] E. Astesiano and G. Reggio. SMoLS-driven concurrent calculi. In TAPSOFT

1987, Lecture Notes in Computer Science 351, Lecture Notes in Computer

Science, pages 169{201, 1987.

[Bar84] Henk Barendregt. The Lambda Calculus. North-Holland, 1984. Studies in

logic 103.

35



[BCDC83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A �lter model and

the completeness of type assignment. J. of Symbolic Logic, 48:931{940, 1983.

[Bou89] G. Boudol. Towards a lambda{calculus for concurrent and communicating

systems. In J. Diaz, editor, Proc. TAPSOFT 89, pages 149{161. Springer-

Verlag, 1989. LNCS 351.

[Bou90a] G. Boudol. Flow eventfor



[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[JP90] R. Jagadeesan and P. Panangaden. A domain{theoretic model for a higher{

order process calculus. In M.S.Paterson, editor, Proc. ICALP 90, pages

181{194. Springer-Verlag, 1990. LNCS 443.

[LB92] L. Leth and B.Thomsen. Some facile chemistry. Technical Report ERCC-

92-14, ERCC, 1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mil91] Robin Milner. The polyadic �


