
A Typed Semantics for Languages with

Higher-Order Store and Subtyping

JAN SCHWINGHAMMER

INFORMATICS, UNIVERSITY OF SUSSEX, BRIGHTON, UK

j.schwinghammer@sussex.ac.uk

ABSTRACT. We consider a call-by-value language, with higher-order functions, records,
references to values of arbitrary type, and subtyping. We adapt an intrinsically typed deno-
tational model for a similar language based on a possible-world semantics, recently given by
Levy [29], and relate it to an untyped model by a logical relation. Following the method-
ology of Reynolds [45], this relation is used to establish coherence of the typed semantics,
with a coercion interpretation of subtyping. Moreover, we demonstrate that this technique
scales to ML-like polymorphic type schemes. We obtain a typed denotational semantics of
(imperative) object-oriented languages, both class-based and object-based ones.

Contents

1 Introduction . 1
2 Language . 4
3 Intrinsic Semantics . 5
4 An Untyped Semantics .

mixed-variant recursive equation. So far, only few models of (typed) lan-

guages with general references appeared in the literature [5, 6, 29], and
most of the work done on semantics of storage does not readily apply to

languages with higher-order store [48].
In a recent paper, Paul Levy

to the mixed-variant recursion forced by the higher-order store we can no

longer use induction over the type structure to establish properties of

TABLE 1. Typing
Γ . e : A A ≺: B

Γ . e : B

x:A ∈ Γ

Γ . x : A

Γ . e1 : B Γ; x:B . e2 : A

Γ . let x=e1 in e2 : A Γ . true : bool

Γ . x : bool Γ . e1 : A Γ . e2 : A

Γ . if x then e1 else e2 : A Γ . false : bool

Γ . xi : Ai ∀i ∈ I

Γ . {mi = xi}i∈I : {mi : Ai}i∈I

Γ . x : {mi : Ai}i∈I
Γ . x:mj : Aj

(j ∈ I)

Γ; x:A . e : B

Γ . �x:e : A⇒ B

Γ . x : A⇒ B Γ . y : A

Γ . x(y) : B

Γ . x : A

Γ . newA x : ref A

Γ . x : ref A

Γ . deref x : A

Γ . x : ref A Γ . y : A

Γ . x:=y : 1

STRUCTURE OF THE REPORT. In the next section, language and type sys-
tem are introduced. Then, in Sects. 3 and 4, typed and untyped models

are presented. The logical relation is de�ned next, and retractions be-
tween types of the intrinsic semantics and the untyped value space are

used to prove coherence in Section 6. In Section 7 both a derived per se-
mantics and the relation to our earlier work on an interpretation of objects
are discussed. Section 8 presents the applications of the theory, providing

a semantics of classes and objects, as well as an example speci�cation
and veri�cation of a non-trivial program. In Section 9 the type system is

enriched with (predicative) polymorphism and proved useful in obtain-
ing a semantics of generic collection classes. Finally, Section 10 discusses

related work.

2 Language

We consider a single base type of booleans, bool, records fmi : Aigi∈I

with labels m 2 L, and function types A) B. We set 1
def
= fg for the

(singleton) type of empty records. Finally, we have a type ref A of mutable
references to values of type A. Term forms include constructs for creating,
dereferencing and updating of storage locations. The syntax of types and

4

terms is given by the grammar:

A;B ∈ Type ::= bool | {mi : Ai}i∈I | A⇒ B | ref A

v ∈ Val ::= x | true | false | {mi = xi}i∈I | �x:e

e ∈ Exp ::= v | let x=e1 in e2 | if x then e1 else e2 | x:m | x(y)

| newA x | deref x | x:=y

Subterms in most of these term forms are restricted to variables in order
to simplify the statement of the semantics in the next section: There, we

can exploit the fact that subterms that exhibit side-effects only appear in
the let-construct. However, in subsequent examples we will use a more

generous syntax. The reduction of such syntax sugar to the expressions
above should always be immediate.

The subtyping relation A �: B is the least re�exive and transitive
relation closed under the rules

Ai ≺: A′
i ∀i ∈ I ′ I ′ ⊆ I

{mi : Ai}i∈I ≺: {mi : A′
i}i∈I′

A′ ≺: A B ≺: B′

A⇒B ≺: A′⇒B′

Note that there is no rule for reference types as these need to be invariant,
i.e., ref A �: ref B only if A � B. A type inference system is given in

Table 1, where contexts Γ are �nite sets of variable-type pairs, with each
variable occurring at most once. As usual, in writing Γ, x:A we assume x
does not occur in Γ. A subsumption rule is used to for subtyping of terms.

3 Intrinsic Semantics

In this section we recall the possible worlds model of [29]. Its extension

with records is straightforward, and we interpret the subsumption

�0608 5Tj
33.693462 Tf
-381.48 -27.2Td
(:-5Tj
33.69-398.d3462 Tf
3.95957 0 Td
5infej
13.55247116 Tf
15.1083 0 Td
(1,)74
13.1924, Td
8)2j
//R65 12.45 1te3462 Tf
54.7876 0 Td
(�)6t80j
15Tj
33.693462 Tf
17.3883 0 Td
in4:-5Tj
33.69�462 Tf
17.747 0 Td
(B5mmed13.55247116 Tf
15.1083 0 Td
(1,)74
13.1924, Td
8)2j
//R65 12..3462 Tf
14.1473 0 Td
(to)2rds011215Tj
33.693462 Tf
17.3883 0 Td
inj
/R13-5Tj
33.69�462 Tf
17.747 0 Td
(B5m58d13.55247116 Tf
15.1083 0 Td
(1,)74
13.1924.462 us839
13.6795 W Td
(su11j
/R65 120 Td
28 2)T1the)Tj
/R92 145 1e462 Tf
17.3883 0 Td
3Td
(Tj
24.338W462 Tf
16.0682 0 Td
1in)Tj
-446.51= Td
(be2j
15.5924.9116 Tf
17.3883 0 Td
5m50894
24.338W462 Tf
17.747 0 Td
(B5m3Tj
18.7079;116 Tf
17.3883 0 Td
(x)Tj
/R45 14.�462 Tf
16.0682 0 Td
1)Tj
/R92 14..9116 Tf
15.1083 0 Td
9x5889Tj
27.571 0 Td
(subtyping)Tj
2 0 Td
(grammar:)Tj
/4.4.3462 304911
16.183 0 Td
(ter3Tj
21.9557523 03462 -2(the)n)Tj
17.3855S462 Tf
0.88d
(7 Td
(A6Tj
/R62 12.E Td
(a3)Tj
19.4239M Td
(1,)70/R68 12.9116 8ef)Txive)Tj
5N Td
8)T6j
/R48 14.0 Td
(a548
/R65 12.I Td
4l)Tj
/R80 8.6C116 Tf
15.1083 0 Td
(3.31
16.4282D Td
Tf
0.88d
(7 Td
(0ts)Tj
19.781O462 usu09
/R65 12.M Td
(1,)70/R68 12.9116 8ef)Txive)Tj
5I Td
4lB be29mar:(A619316.183 0 Td
(tthe)2j
23.978c4.4462 33su02
/R65 12.55 0 Td
(j)T12Tj
31.6405cessari y-17.28
(06does)Tj
32.36R45 ain1 08i5j7x)T90j
24.3382 Td
(su236tics)Tj
4.1 0 Td
(formxive)Tj
5el666 0.9116 (ty1jTj
23.8589 0 Td
(inn3yping)Tj
parti.9116 45)6y
/R48 14.R45 inu8 0 Td
7forter5Tser5T

Following [29] the semantics of types can now be obtained as minimal
invariant of the locally continuous functor F : Cop � C �! C (derived
from the domain equations for types by separating positive and negative
occurrences of the store) given in Table 2. Here, C is the bilimit-compact
category

C
def
=

Q

w∈W pCpo ×
Q

A∈Type[W;Cpo] •→ [W;pCpo] (2)

where [W ,Cpo] �! [W ,pCpo] denotes the category with objects the func-
tors A,B : W ! Cpo and morphisms the partial natural transformations
µ : A

:
! B, i.e., for A,B : W ! Cpo the diagram

Aw

Aw′

w ��

µw / Bw

Bw′

w��

Aw′
µw′

/ Bw′

(3)

commutes. The �rst component of the product in (2) is used to obtain

Sw
def
= DSw from the minimal invariant D = hfDSwgw, fDAgAi, and the

second component yields JAK
def
= DA.

In fact, for every type A 2 Type the minimal invariant D provides
isomorphisms F (D,D)A = DA in the category [W ,Cpo] of functors W !
Cpo and total natural transformations.

SEMANTICS. Each subtyping derivation A �: B determines a coercion,
which is in fact a (total) natural transformation from JAK to JBK, de�ned

in Table 3: We follow the notation of [45] and write P(J) to distinguish a
derivation of judgement J from the judgement itself.

In the following we write JΓKw for the set of environments, i.e., maps
from variables to

⋃
A JAKw s.t. ρ(a)Tj
/R34ψ14.3462ψT3240.5878ψ1B
(()Tj
/R48ψ14.3462ψTf
5.50894ψ0ψTdx(ρ(a)Tj
/R34ψ14.3462j
8486386ψ0ψTd
())Tj
/R42ψ14.3462ψTf
17.5909ψ0ψTd
(2)Tj
/R51ψ14.3462ψTf411.6651ψ0ψTd
(J)Tj
/R48ψ14.3462ψTf
5.75283ψ0ψTd
(A)Tj
/R51ψ14.3462ψTf
10.7884ψ0ψTd
(K)Tj
/R95ψ10.0423ψTf
834.971ψ-4.32ψTd
(w)Tj
/R13ψ14.3462ψTf
13.8ψ4.32ψTd
(for)Tj
22.4119ψ0ψTdall(.)Tj
/R48ψ14.3462ψTf957.9294ψ0ψTdx(ρ(a)Tj
/R34ψ14.3462j
8486386ψ0ψTd
(.)Tj
/R48ψ14.3462ψT4
7.90254ψ0ψTd
(A)Tj
/R42ψ14.3462ψTf
15.5883ψ0ψTd
(2)Tj
/R45ψ14.3462ψTf444.6651ψ0ψTd�(w)Tj
/R13ψ14.3462ψTf
8.91822ψ0ψTd
(.)Tj
10.9865ψ0ψTd
(F)Tj
6.71523ψ0ψTd
for)Tj
/R48ψ14.3462ψTf
186.042ψ0ψTd
(w)Tj
/R42ψ14.3462ψTf
1514249ψ0ψTd�or)Tj
/R48ψ14.3462ψTf
16.742ψ0ψTd
(w)Tj
9895ψ10.0423ψTf
10.7378ψ1543999ψTd0(w)Tj
/R13ψ14.3462ψT9ψ3.9600-8ψ1543999ψTd,(A)Tj
/R51ψ14.3462ψTf
-510.93ψ166.24ψTd
(J)Tj
/R45ψ14.3462ψTf
5.75283ψ0ψTd
(�)Tj
/R51ψ14.3462ψTf
8.99507ψ0ψTd
(K)Tj
/R95ψ10.0423ψTf
7720117ψ002ψTd
(w)Tj
/R117ψ7.1731ψT834.502.8ψ4.32ψTd0(K)Tj
/R95ψ10.0423ψT-834.502.9ψ-15.84ψTdw(2)Tj
/R45ψ14.3462ψTf
35.8ψ4.12002ψTd
(()Tj
/R48ψ14.3462ψTf
5.50894ψ0ψTd
(ρ(a)Tj
/R34ψ14.3462ψT3240.5878ψ1B
())Tj
/R13ψ14.3462ψTj
1065909ψ0ψTd
(denotes)Tj370.1524ψ0ψTd
(the)Tj
29.3382ψ0ψTd
(environme(C)Tj41127507ψ0ψTdsuEach)Tj327.0668ψ0ψTd
(at(�)Tj
/R51ψ14.3462ψTj
29.3751ψ0ψTd
(J)Tj
/R45ψ14.3462ψTf
5.75283ψ0ψTd
(�)Tj
/R51ψ14.3462ψTf
8.99507ψ0ψTd
(K)Tj
/R95ψ10.0423ψT6
8.00667ψ002ψTd
(w)Tj
/R117ψ7.1731ψT834.502.8ψ4.32ψTd0(K)Tj
/R95ψ10.0423ψT-834.502.9ψ-15.84ψTdw(2)Tj
/R45ψ14.3462ψTf
35.8ψ4.12002ψTd
(()Tj
/R48ψ14.3462ψTf
5.50894ψ0ψTd
(ρ(a)Tj
/R34ψ14.3462ψT3240.5878ψ1B
(
(()Tj
/R48ψ14.3462ψTf
101.279ψ0ψTdx(ρ(a)Tj
/R34ψ14.3462j
8486386ψ0ψTd
())Tf
156.089ψ0ψTd/to)Tj
/R51ψ14.3462ψTf
190751ψ0ψTd
(J)Tj
/R48ψ14.3462ψTf
5.75283ψ0ψTd
(A)Tj
/R51ψ14.3462ψTf
10.7884ψ0ψTd
(K)Tj
/R95ψ10.0423ψTf
8562107ψ002ψTd
(w)Tj
/R117ψ7.1731ψT834.502.8ψ4.32ψTd0(K)Tj
/R95ψ10.0423ψT-834.502.9ψ-15.84ψTdw(2)Tj
/R45ψ14.3462ψTf
35.8ψ4.12002ψTd
(()Tj
/R48ψ14.3462ψTf
5.5.089ψ0ψTd
(ρ(a)Tj
/R34ψ14.3462ψT3240.5878ψ1B
(()Tj
/R48ψ14.3462ψTf
5.50879ψ0ψTdx(ρ(a)Tj
/R34ψ14.3462j
848635878ψ1B
(
3))Tj
/R13ψ14.3462ψTf
-
57.8.9ψ-15.84ψTd
(for)Tj
/R48ψ14.3462ψTf
28.4119ψ0ψTdx(ρ(a)Tj
/R34ψ14.3462j
8486386ψ0ψTd
(.)Tj
/R48ψ14.3462ψTf
3.95955ψ0ψTd
(A)Tj
/R13ψ14.3462ψTf4.745283ψ0ψTdtain)Tj
/R45ψ14.3462ψTf
16.0682ψ0ψTd�(w)Tj
/R13ψ14.3462ψTf
8.90751ψ0ψTd
(.)T8ψ2.80254ψ0ψTd
(The)Tj7.692139ψ0ψTd
(semantics)Tj51097384ψ0ψTd
(of)Tj
16.303ψ0ψTdd
(derivatines)Tjf
9.3948ψ0ψTd
((2))Tj
22.0397ψ0ψTd
(towing)T4
1395878ψ0ψTd
(juonmencs)Tj917.2089ψ0ψTd
(can)Tj
2791807ψ0ψTd
(now)T-32412.621ψ-15.72ψTd
(be)Tj
1702089ψ0ψTdpresnmeed,(w)Tj
/RR19ψ12.9116ψTf724..921j
24.32ψTd
(J)Tj
6258ψ12.9116ψTf
2752105ψ0ψTd�(w)Tj
/R65ψ12.9116ψTf
11.635878ψ1B.(])Tj
595878ψ0ψTdype)Tj
/R62ψ12.9116ψTj
929372ψ0ψTd.(w)Tj
/R65ψ12.9116ψTj
7..6851ψ0ψTdA(w)Tj
/RR19ψ12.9116ψTf
9.42386ψ0ψTd
(K)Tj
/R77ψ8.60772ψT
25.82598ψ-8436001ψTd
(w)Tj
6R62ψ12.9116ψTf
1152ψ-8436001ψTd.(w)Tj
/RR19ψ12.9116ψTf
7.43853ψ0ψTd
(J)Tj
6258ψ12.9116ψTf
2752105ψ0ψTd�(w)Tj
/RR19ψ12.9116ψT811.63486ψ0ψTd
(K)Tj
/R77ψ8.60772ψT
25080698ψ-8436001ψTd
(w)Tj
6862ψ12.9116ψTf
1303ψ-8436001ψTdω(w)Tj
/R65ψ12.9116ψTf
16.9119ψ0ψTdS(K)Tj
/R77ψ8.60772ψT
28.11.24ψ-4436001ψTd
(w)Tj
6562ψ12.9116ψTf
1152ψ-4436001ψTd⇀(w)Tj
/R142ψ12.9116ψTf710.9915.72ψTdP(K)Tj
/R77ψ8.60772ψT1
33.48ψ-153.6ψTd
(w)Tj
/R117ψ7.1731ψTf
7.92ψ432ψTd0(K)Tj
/R80ψ8.60772ψT3
9.959992ψ432ψTdλ(K)Tj
/R77ψ8.60772ψT
229372ψ0ψTd
(w)Tj
6R62ψ12.9116ψT7ψ848023ψ-8436001ψTd
(()Tj
6562ψ12.9116ψT8ψ1517319ψ0ψTdS(K)Tj
/R77ψ8.60772ψT
28.1.826ψ22.92ψTd
(w)Tj
/R117ψ7.1731ψTf
7.92ψ432ψTd0(K)Tj
/R68ψ12.9116ψTf
7.959990.48002102ψTd�(w)Tj
/RR19ψ12.9116ψTf
13.6894ψ0ψTd
(J)Tj
6562ψ12.9116ψT8ψ2752105ψ0ψTdA(w)Tj
/RR19ψ12.9116ψTf
9.42386ψ0ψTd
(K)Tj
/R77ψ8.60772ψT
25/R1498ψ-8436001ψTd
(w)Tj
/R117ψ7.1731ψTf
7.51992ψ432ψTd0(K)Tj
/R62ψ12.9116ψTψ-4.5662ψ-4436001ψTd
3))Tj
/R13ψ14.3462ψTf36f
7.9-2203.60ψTdAncs)T2
1027927ψ0ψTdobserrived)T6ψ-49983ψ0ψTdtain)Tf
1860682ψ0ψTdLevy'sng)T4
103.615ψ0ψTdpaperom)Tj
3.66375ψ0ψTd
(,)Tj
9.91953ψ0ψTde(Each)Tj
/R34ψ14.3462ψTj
3435185ψ0ψTdvaluere2 : Adetermines

transformation from JΓK to JAK [W,Cpo]

the and of
(is)Tjf
675389 0 Td
(fact)Tj
2.68724 0 Td
(in)Tj
15.9482 0 Td
(the)Tj
-f
8..64 -17.28 Tdstatdgementof the semanties. F
in the of we to

In forthe ofthecomponeons.

The semantics of isused for the

TABLE 2. De�ning F : Cop × C −→ C

On C-objects D;E
F (D;E)Sw =

Q

lA∈w EAw

F (D;E)boolw = BVal = {true; false}
F (D;E)bool(w≤w′) = idBVal

F (D;E){mi:Ai}w = {|mi : EAiw|}
F (D;E){mi:Ai}(w≤w′) = �r:{|mi = EAi(w≤w′)(r:mi)|}

F (D;E)A⇒Bw =
Q

w′≥w(DSw′ ×DAw′ *
P

w′′≥w′ (ESw′′ ×EBw′′))

F (D;E)A⇒B(w≤w′) = �f�w′′ ≥ w′:fw′′

F (D;E)ref Aw = {lA | lA ∈ w}
F (D;E)ref A(w≤w′) = �l:l

On C-morphisms h : D′ −→ D and k : E −→ E′ by

F (h; k)Sw = �s:

�

lA 7→ kSw(s)lA if kSw(s)lA ↓ for all lA ∈ w
unde�ned otherwise

F (h; k)boolw = idBVal

F (h; k){mi:Ai}w = �r:

�

{|mi = kAiw(r:mi)|} if kAiw(r:mi)↓ for all i
unde�ned otherwise

F (h; k)A⇒Bw = �f�w′ ≥ w �〈s; a〉:
8

>

>

>

>

<

>

>

>

>

:

〈w′′; 〈kSw′′(s′′); kBw′′ (b)〉〉
if hSw′(s)↓ and hAw′(a)↓ and

fw′(hSw′(s); hAw′ (a)) = 〈w′′; 〈s′′; b〉〉↓
and kSw′′(s′′)↓ and kBw′′ (b)↓

undef. otherwise

F (h; k)ref Aw = �l:l

of the subsumption rule,
s

P(Γ . e : A) P(A ≺: B)

Γ . e : B

{

w

�s

=

�

〈w′; 〈s′; JP(A ≺: B)Kw′ a〉〉 if JP(Γ . e : A)Kw �s = 〈w′; 〈s′; a〉〉↓
unde�ned otherwise

As explained above, the semantics of functions is parameterised over ex-
tensions of the current world w,

s
P(Γ; x : A . e : B)

Γ . �x:e : A⇒ B

{

w

�s

= 〈w; 〈s; �w′ ≥ w�〈s′; a〉: JP(Γ; x:A . e : B)Kw′ (JΓKw
′

w �)[x := a] s′〉〉

8

TABLE 3. Coercion mapss

A ≺: A

{

w

= idJAKw

s
P(A ≺: A′) P(A′ ≺: B)

A ≺: B

{

w

= JP(A′ ≺: B)Kw ◦ JP(A ≺: A′)Kw
s

I ′ ⊆ I P(Ai ≺: A′
i) ∀i ∈ I ′

{mi : Ai}i∈I ≺: {mi : A′
i}i∈I′

{

w

= �r:{|mi = JP(Afi:

TABLE 4. Semantics of typing judgementss
P(Γ . e : A) P(A ≺: B)

Γ . e : B

{

w

�s

=

�

〈w′; 〈s′; JP(A ≺: B)Kw′ a〉〉 if JP(Γ . e : A)Kw �s = 〈w′; 〈s′; a〉〉↓
unde�ned otherwise

s

Γ . x : A

{

w

�s = 〈w; 〈s; �(x)〉〉

s
P(Γ . e1 : B) P(Γ; x:B . e2 : A)

Γ . let x=e1 in e2 : A

{

w

�s

=

8

<

:

P(JΓ; x:B . e2 : AK)w′(JΓKw
′

w �)[x := b] s′

if JP(Γ . e1 : B)Kw �s = 〈w′; 〈s′; b〉〉↓
unde�ned otherwises

Γ . true : bool

{

w

�s = 〈w; 〈s; true〉〉

s
P(Γ . x : bool) P(Γ . ei : A) i = 1; 2

Γ . if x then e1 else e2 : A

{

w

�s

=

�

JP(Γ . e1 : A)Kw �s if J−.. i .

TABLE 5. Semantics of typing judgements (continued)s
P(Γ . x : A)

Γ . newA x : ref A

{

w

�s = 〈w′; 〈s′; lA〉〉

where 〈w; 〈s; a〉〉 = JP(Γ . x : A)Kw �s,
w′ = w ∪ {lA} for lA ∈ LocA \ dom(w) and for all l′ ∈ w′ :

s′:l′ =

(

JA′Kw
′

w (s:l′) for l′ ∈ w ∩ LocA′

JAKw
′

w (a) for l′ = lAs
P(Γ . x : ref A)

Γ . deref x : A

{

w

�s = 〈w; 〈s; s:l〉〉

where 〈w; 〈s; l〉〉 = JP(Γ . x : ref A)Kw �s
s

P(Γ . x : ref A) P(Γ . y : A)

Γ . x:=y : 1

{

w

�s = 〈w; 〈ŝ; {||}〉〉

where 〈w; 〈s; l〉〉 = JP(Γ . x : ref A)Kw �s;
〈w; 〈s; a〉〉 = JP(Γ . y : A)Kw �s and for l′ ∈ w :

ŝ:l′ =

�

a if l′ = l
s:l′ if l′ 6= l

type information in

TABLE 6. Interpretation of untyped terms

JxK �� =

�

〈�; �(x)〉 if �(x)↓
unde�ned otherwise

Jlet x=e1 in e2K �� =

�

Je2K �[x := v]�′ if Je1K �� = 〈�′; v〉↓
unde�ned otherwise

JtrueK �� = 〈�; true〉

Jif x then e1 else e2K �� =

8

<

:

Je1K �� if �(x) = true ↓
Je2K �� if �(x) = false ↓
unde�ned otherwise

J{mi = xi}K �� =

�

〈�; {|mi = �(xi)|}〉 if �(xi)↓ for all i
unde�ned otherwise

Jx:mK �� =

�

〈�; �(x):m〉 if �(x) ∈ RecM(Val) and �(x):m↓
unde�ned otherwise

J�x:aK�� = 〈�; �〈�′; v〉: JaK �[x := v]�′〉

Jx(y)K �� =

8

<

:

�(x)〈�; �(y)〉 if �(x) ∈ [St × Val * St × Val]
and �(y)↓

unde�ned otherwise

JnewA xK �� = 〈� + {|lA = �(x)|}; lA〉; where lA ∈ LocA \ dom(�)

Jderef xK �� =

�

〈�; �:�(x)〉 if �(x) ∈ Loc and �:�(x)↓
unde�ned otherwise

Jx:=yK �� =

�

〈�′; {||}〉 if �(x) ∈ Loc; �:�(x)↓ and �(y)↓
unde�ned otherwise

where �′:l =

�

�(y) if l = �(x)
�:l otherwise

straightforward: There arey

TABLE 7. Kripke logical relation

〈x; y〉 ∈ Rbool

w
def

⇐⇒ y ∈ BVal ∧ x = y

〈r; s〉 ∈ R
{mi:Ai}
w

def
⇐⇒ s ∈ RecL(Val) ∧ ∀i: (s:mi ↓ ∧ 〈r:mi; s:mi〉 ∈ RAi

w)

〈f; g〉 ∈ RA⇒B
w

def
⇐⇒ g ∈ [St × Val * St × Val] ∧

∀w′ ≥ w ∀〈s; �〉 ∈ RSt
w′ ∀〈x; y〉 ∈ RAw′

(fw′(s; x)↑ ∧ g(�; y)↑)

∨ ∃w′′ ≥ w′ ∃s′ ∈ Sw′ ∃x′ ∈ [[B]]w′ ∃�′ ∈ St ∃y′ ∈ Val:

(fw′(s; x) = 〈w′′; 〈s′; x′〉〉 ∧ g(�; y) = 〈�′; y′〉

∧ 〈s′; �′〉 ∈ RSt
w′′ ∧ 〈x′; y′〉 ∈ RBw′′)

〈x; y〉 ∈ Rref A
w

def
⇐⇒ y ∈ w ∩ LocA ∧ x = y

with the auxiliary relation RSt
w ⊆ Sw × St,

〈s; �〉 ∈ RSt
w

def
⇐⇒ dom(s) = w = dom(�) ∧ ∀lA ∈ w: 〈s:lA; �:lA〉 ∈ RAw

5.1 Existence of RA
w

To establish the existence of such a relation one uses Pitts’ technique for
the bilimit-compact product category C�pCpo.

� A is B) B′. Suppose hh, ki 2 Φ(R,S)B⇒B′

w , we have to show that

〈F (e1; f1)B⇒B′ w(h);G(e2; f2)(k)〉 ∈ Φ(R′; S′)B⇒B′

w (6)

So let w′ � w, hs, σi 2 R′St
w′ and hx, yi 2 R′B

w′ . By assumption,

e1Sw′(s)↓ iff RecLoc(e2)(�)↓ and then 〈e1Sw′(s);RecLoc(e2)(�)〉 ∈ RSt
w′

e1Bw′

� A is fmi : Aigi∈I . By de�nition of RA
w we know y 2 RecM(Val)

and hx.mi, y.mii 2 RAi
w for all i 2 I. So by induction hypothesis,

hJAiK
w′

w (x.mi), y.mii 2 RAi
w for all i, and hJAK

w′

w (x), yi 2 RA
w′ follows

since

JAKw
′

w (x):mi = JAiKw
′

w (x:mi)

� A is B) B′. By de�nition, JB) B′K
w′

w (x) = λw′′≥w′xw′′ , so the re-

sult follows directly from the de�nition of RB⇒B′

w′ and the assumption

hx, yi 2 RB⇒B′

w .

� A is ref B. Immediately from Jref BK
w′

w (x) = x.

Lemma 5.5 (Subtype Monotonicity). Let w 2 W , A �: B and ha, ui 2
RA

w . Then hJA �: BKw (a), ui 2 RB
w .

Proof. By a straightforward induction on the derivation of A �: B: Sup-
pose hx, yi 2 RA

w. If the last step in A �: B is

� (Re�exivity). In this case, A � B and JA �: BKw (x) = x, so that

hJA �: BKw (x), yi 2 RB
w is immediate.

� (Transitivity). Assume A �: B was derived from A �: A′ and A′ �:
B. Applying the induction hypothesis, hJA �: A′Kw (x), yi 2 RA′

w and
again by induction hypothesis,

hJA′ �: BKw (JA �: A′Kw (x)), yi 2 RB
w

as required.

� (Arrow). Write x′ := JA)B �: A′) B′Kw (x), we

By assumption y 2 RecM(Val) and hx.mi, y.mii 2 RAi
w , for all

i 2 I. By induction hypothesis, hJAi �: A′
iKw (x.mi), y.mii 2 RAi

w

for all i 2 I ′ � I.

the inductive hypothesis to Γ, x : A . e2 : B we obtain that either both

Je2K η[x := v]σ′ " and JΓ, x:A . e2 : BKw′ (JΓK
w′

w (ρ)[x := u])s′ ", or

� JΓ, x:A . e2 : BKw′ (JΓK
w′

w (ρ)[x := u])s′ = hw′′, hs′′, u′ii# and

� Je2K η[x := v]σ′ = hσ′′, v′i

where hs′′, σ′′i 2 RSt
w′′ and hu′, v′i 2 RB

w′′ . Using the de�nition of

JΓ . let x=e1 in e2 : BK and Jlet x=e1 in e2K, this is all that needed to
be shown.

� (Const) Suppose we have derived Γ.true : bool by the rule for constant
true. The result follows directly from JΓ . true : boolKw ρs = hs, truei
and JtrueK ησ = hσ, truei, the assumption hs, σi 2 RSt

w and the de�ni-

tion of Rbool
w . The case where Γ . false : bool is analogous.

� (If) By induction hypothesis on the premiss Γ.x : bool, the assumption

hρ, ηi 2 RΓ
w and the de�nition of the semantics, JΓ . x : boolKw ρs =

hw, hs, uii and JxK ησ = hσ, vi s.t. hu, vi 2 Rbool
w , for all hs, σi 2 RSt

w . By

de�nition this means u, v 2 BVal and u = v.
We consider the case where u = true = v , the case where both

equal false is analogous. By induction hypothesis on Γ . e1 : A, either
both JΓ . e1 : AKw ρs" and Je1K ησ ", or JΓ . e1 : AKw ρs = hw′, hs′, u′ii#
and Je1K ησ = hσ′, v′i where hs′, σ′i 2 RSt

w′ and hu′, v′i 2 RA
w′ . The re-

sult follows now by observing that JΓ . if x then e1 else e2 : AKw ρs =
hw′, hs′, u′ii and Jif x then e1 else e2K ησ = hσ′, v′i.

� (Record) For all i 2 I, by induction hypothesis and from the fact

that JxiK ησ = hσ, η(xi)i one obtains JΓ . xi : AiKw ρs = hw, hs, uiii
s.t. hui, η(xi)i 2 RAi

w . By de�nition, JΓ . fmi = xig : fmi : AigKw ρs =
hw, hs, fjmi = uijgii and Jfmi = xigK ησ = hσ, fjmi = η(xi)jgi,

both JΓ, x:A . e : BKw′ (JΓK
w′

w (ρ)[x := u])s′ " and JeK η[x := v]σ′ ", or

JΓ; x:A . e : BKw′ (JΓKw
′

w (�)[x := u])s′ = 〈w′′; 〈s′′; u′〉〉↓

and JeK η[x := v]σ′ = hσ′′, v′i where hs′′, σ′′i 2 RSt
w′′ and hu′, v′i 2 RB

w′′

Theorem 5.7 (Bracketing). For all w 2 W and A 2 Type,

1. for all x 2 JAKw . hx, φA
w(x)i 2 RA

w,

2. for all s 2 Sw. hs, φSt
w(s)i 2 RSt

w

3. for all hx, yi 2 RA
w . x = ψA

w(y),

4. for all hs, σi 2 RSt
w . s = ψSt

w (σ)

Compared to Reynolds work, the proof of Theorem 5.7 is more in-
volved, again due to the (mixed-variant) type recursion caused by the use
of higher-order store. Therefore we �rst show a preliminary lemma, which
uses the projection maps that come with the minimal invariant solution D

of the endofunctor F on C: For δ(e) = F (e, e) we set πAw
n

def
= δn(?)Aw , and

similarly πSw
n

def
= δn(?)Sw. Note that by de�nition of the minimal invariant

solution,
F

n �
Aw
n = (

F

n �
n(⊥))Aw = (lfp(�))Aw = idAw

follows. Similarly,
⊔

n π
Sw
n = idSw holds.

Lemma 5.8. For all n 2 N, w 2 W , A 2 Type,

1. 8x 2 JAKw . π
Aw
n (x)# =) hπAw

n (x), φA
w(πAw

n (x))i 2 RA
w

2. 8s 2 Sw. π
Sw
n (s)# =) hπSw

n (s), φSt
w(πSw

n (s))i 2 RSt
w

3. 8hx, yi 2 RA
w . π

Aw
n (x)# =) πAw

n (x) = πAw
n (ψA

w(y))

4. 8hs, σi 2 RSt
w . π

Sw
n (s)# =) πSw

n (s) = πSw
n (ψSt

w (σ))

Proof. By a simultaneous induction on n, considering cases for A in parts
1 and 3. Clearly the result holds for n = 0 since then πAw

0 and πSw
0 are

unde�ned everywhere. For the case n > 0:

1. We consider cases for A:

� A is bool: By de�nition, πboolw
n (x) = x 2 BVal, and therefore

φbool
w (πboolw

n (x)) = πboolw
n (x) = x 2 BVal. Hence,

〈�boolw
n (x); �bool

w (�boolw
n (x))〉 = 〈x; x〉 ∈ Rbool

w

by the de�nition of Rbool
w .

� A is fjmi : Aijg: We know π
{|mi:Ai|}
n (x) = fjmi = πAiw

n−1(x.mi)jg. By
induction hypothesis,

〈�Aiw
n−1 (x:mi); �

Ai
w (�Aiw

n−1(x:mi))〉 ∈ RAi
w

22

for all i and, by the de�nition of π
{|mi:Ai|}w
n and φ

{|mi:Ai|}

φref B
w (πref Bw

n (x)) = φref B
w (x) = x 2 Loc, which entails

〈�ref Bw
n (x); �ref B

w (�ref Bw
n (x))〉 = 〈x; x〉 ∈ Rref B

w

This concludes this part of the proof.

2. Suppose πSw
n (s)# and let sn = πSw

n (s) = fjlA = πAw
n−1(s.lA)jglA∈w, and

so

�St
w(sn) = {|lA = �Aw(sn:lA)|}lA∈w

= {|lA = �Aw(�Awn−1(s:lA))|}lA∈w

Then dom(sn) = w = dom(φSt
w(sn)). Moreover, the �rst part of the

induction hypothesis yields hsn.lA, φ
St
w(sn).lAi 2 RA

w , for all lA 2 w,
i.e., hsn, φ

St
w(sn)i 2 RSt

w as required.

3. Again, we consider cases for A:

� A is bool: By the de�nition of Rbool
w , y 2 BVal and x = y. The

result follows immediately from πboolw
n (x) = x = y = π consider

as required.

Proof of Theorem 5.7. For the �rst part, let x 2 JAKw. As observed above

we have x =
⊔

n π
Aw
n (x), and in particular πAw

n (x) # for suf�ciently large
n 2 N. By Lemma 5.8,

〈�Awn (x); �Aw(�Awn (x))〉 ∈ RAw

for all suf�ciently large n. Since this forms an increasing chain in the cpo
JAKw � Val, completeness of RA

w and continuity of φA
w shows

〈x; �Aw(x)〉 = 〈
F

n �
Aw
n (x); �Aw(

F

n �
Aw
n (x))〉

=
F

n〈�
Aw
n (x); �Aw(�Awn (x))〉 ∈ RAw

as required. The other parts are similar.

6 Coherence of the Intrinsic Semantics

We have now all the parts assembled in order to prove coherence (which
proceeds exactly as in [45]): Suppose P1(Γ . e : A) and P2(Γ . e : A) are
derivations of the judgement Γ . e : A. We show that their semantics
agree. Let w 2 W , ρ 2 JΓKw and s 2 Sw. By Theorem 5.7 parts (1) and

(2), hρ, φΓ
w(ρ)i 2 RΓ

w and hs, φSt
w(s)i 2 RSt

w . Hence, by two applications of
the Basic Lemma of logical relations, either

JP1(Γ . e : A)Kw �s↑ ∧ JeK (�Γ
w(�))(�St

w(s))↑ ∧ JP2(Γ . e : A)Kw �s↑
or else there exist wi, si, vi and σ, v such that

JP1(Γ . e : A)Kw �s = 〈w1; 〈s1; v1〉〉

∧ JeK (�Γ
w(�))(�St

w(s)) = 〈�; v〉

∧ JP2(Γ . e : A)Kw �s = 〈w2; 〈s2; v2〉〉

where hsi, σi 2 RSt
wi

and hvi, vi 2 RA
wi

, for i = 1, 2. The de�nition of the

relation RSt
wi

entails w1 = dom(σ) = w2, and by Theorem 5.7 parts (3) and
(4), s1 = ψSt

w1
(σ) = ψSt

w2
(σ) = s2 and v1 = ψA

w1
(v) = ψA

w2
(v) = v2. We

have therefore shown

Theorem 6.1 (Coherence). All derivations of a judgement Γ . e : A have

the same meaning in the intrinsic semantics.

Note that this result does not hold if the type annotation A in newA

was removed. In particular, there would then be two different derivations
of the judgement

x:{m : bool} . new x; true : bool (7)

one without use of subsumption, and one where x is coerced to type 1

before allocation. The denotations of these two derivations are different

26

(clearly not even the resulting extended worlds are equal). It could be

argued that, at least in this particular case, this is a defect of the under-
lying model: The use of a global store does not re�ect the fact that the

cell allocated in (7) above remains local and cannot be accessed by any
enclosing program. However, in the general case we do not know if the
lack of locality is the only reason preventing coherence for terms without

type annotations.

7 A PER Model of Higher-Order Storage and Subtyping

We consider two consequences of the preceding technical development
in more detail. Firstly, the results can be used to obtain an (extrinsic)

semantics over the untyped model, based on partial equivalence relations.
Secondly, we discuss how this relates to a model of Abadi and Leino’s logic

for objects that was considered in [43].

7.1 Extrinsic PER Semantics

Apart from proving coherence, Reynolds used (his analogue of) Theo-
rem 5.7 to develop an extrinsic semantics of types for the (purely applica-
tive) language

However, locality is a fundamental assumption underlying many rea-

soning principles about programs, such as object and class invariants in
object-oriented programming. The work of Reddy and Yang [41], and

Benton and Leperchey [7], shows how more useful equivalences can be
built in into typed models of languages with storable references. We plan
to investigate in how far these ideas carry over to full higher-order store.

We remark that, unusually, the per semantics sketched above does not
seem to work over a �completely untyped� partial combinatory algebra:

The construction relies on the partition of the location set Loc =
⋃

A LocA.
In particular, the de�nition of the pers jjAjjw depends on this rather arbi-

trary partition. The amount of type information retained by using typed
locations allows to express the invariance required for references in the

presence of subtyping. We have been unable to �nd a more �semantic�
condition. In view of this, the �untyped� model could be viewed simply

as a means to an end, facilitating the de�nition of the logical relation and
bracketing maps in order to prove coherence.

Nevertheless, as pointed out to us by Bernhard Reus, the per model
may be useful for providing a semantics of languages with down-casts, for
example in the form of a construct

Γ . x : A Γ . e1 : B⇒C Γ . e2 : A⇒C

Γ . try (B)x in e1 else e2 : C
(B ≺: A)

The intrinsic semantics of Section 3 is not suitable for this purpose: For

instance, due to the use of coercions, it is impossible to recover �forgotten�
�elds of a record.

7.2 On Abadi and

w-stores σ,

m(�) = 〈�′; v〉 =⇒ ∃w′ ≥ w:v ∈ JAKw′ and �′ is a w-store (10)

where JAKw′ is the appropriate denotation of type A. But the use of an
existential quanti�cation isofBut

for all n 2 N. Thus JA)BK
w′

w � lfp(Gw�) = lfp(G
w′JΓKw′

w (�)
) and ρ 7!

lfp(Gw�) is a natural transformation JΓK �! JA) BK. Given the notation
as above, we now set
s

Γ; f :A⇒B;x:A . e : B

Γ . �f(x):e : A⇒ B

{

w

�s = 〈w; 〈s; lfp(Gwρ)〉〉 ∈
P

w′≥w Sw′ × JA⇒BKw′

to obtain a semantics for recursive functions in the typed model. In the
untyped model, we simply set

J�f(x):eK �� = 〈�; lfp(�h: J�x:eK �[f := h])〉

Finally, we turn to the proof of the Basic Lemma, which extends to the
case of recursive functions, too.

Proof of Lemma 5.6, continued. Let hs, σi 2 RSt
w and hρ, ηi 2 RΓ

w. We know
that by de�nition,

s
Γ; f :A⇒B;x:A . e : B

Γ . �f(x):e : A⇒ B

{

w

�s = 〈w; 〈s; lfp(Gwρ)〉〉

and

J�f(x):eK �� = 〈�; lfp(�h: J�x:eK �[f := h])〉

By assumption, hs, σi 2 RSt
w , and it remains to show that the two �xed

points are related by RA⇒B
w .

To see this, �rst observe that hρ[f := h], η[f := h′]i 2 RΓ;f :A⇒B
w for

all hh, h′i 2 RA⇒B
w . Therefore as in the case (Lambda) of non-recursive

functions, from the induction hypothesis Γ, f :A)B, x:A . e : B it follows
that

〈Gwρ(h); J�x:eK �[f := h]〉 ∈ RA⇒B
w (12)

for all hh, h′i 2 Rwh
(A)Tj
/R98ψ10.0423ψTf
8.6364ψ0ψTd
())Tj
/R95ψ10.0423ψTf
11.398ψ0ψTd
(B)Tj
-20.1548ψ-8.75999ψTd
(w)Tj
/R13ψ14.343Tf
8,ψTf
11.F28ψ0ψTd
9.342ψTf
17.1401ψ0ψTd6shoeLambd302by Rwh
(A)Tj
/R98ψ10.0423ψTf
8.6364ψ0ψTd
())Tj
/R95ψ10.0423ψTf
11.398ψ0ψTd
(B)Tj
-20.1548ψ-8.75999ψTd
(w)Tj
/R13ψ142.91Tf
8

type Bj , is written [fi:Ai,mj :Bj)Cj]i;j . The introduction rule is

A ≡ [fi:Ai;mj :Bj⇒Cj]i,j
Γ . xi : Ai ∀i Γ; yj :A; zj :Bj . bj : Cj ∀j

Γ . [fi = xi;mj = &(yj)�zj: bj]i,j : A
(13)

Subtyping on objects is by width, and for methods also by depth:

Bj⇒Cj ≺: B′
j⇒C ′

j ∀j ∈ J ′ I ′ ⊆ I J ′ ⊆ J

[fi : Ai;mj : Bj ⇒ Cj]i∈I,j∈J ≺: [fi : Ai;mj : B′
j ⇒ C ′

j]i∈I′,j∈J′

(14)

The following is essentially a (syntactic) presentation of the �xed-point

(or closure) model of objects [26], albeit in a typed setting: Objects of
type A � [fi:Ai,mj :Bj)Cj]i;j are simply interpreted as records of the

corresponding record type A∗ � ffi:ref A
∗
i ,mj :B

∗
j)C∗

j gi;j . Note that the
self parameter does not play any part in this type (in contrast to functional

interpretations of objects, see [14] for instance), and soundness of the
subtyping rule (14) follows directly from the rules of Section 2.

A new object [fi=xi,mj=ς(yj)λzj . bj]i;j of type A is created by allocat-
ing a state record s and de�ning the methods by mutual recursion (using
obvious syntax sugar),

let s = {fi = newAi(xi)}i∈I in MethA(s)({mj = �yj�zj: bj}j∈J)

where MethA : ffi:ref Aigi∈I) fmj :A
∗)Bj)Cjgj∈J) A∗ is given by

MethA ≡ �f(s):�m: {fi = s:fi;mj = �zj : (m:mj(f(s)(m)))(zj)}i∈I,j∈J

Soundness of the introduction rule (13) follows immediately from this
interpretation of objects and object types.

The semantics of �eld selection and �eld update are simply derefer-
encing and update, resp., of the corresponding �eld of the record. The

reduction (�)∗ of objects to the procedural language of Section 2 is sum-
marized in Table 10.

8.3 Reasoning about Higher-order Store and Objects

One of the main motivations for devising a denotational semantics is to
provide proof principles. It should enable us to specify, and reason about,

concrete programs.
We look at two small case studies in this section: Firstly, recursion

through the store, exempli�ed by an object-based implementation of the
factorial function, where the recursion is resolved by calling the method

through an object stored in a member �eld. This calls for recursively de-
�ned predicates whose well-de�nedness has to be established �rst (similar

to the existence proof for the Kripke logical relation of Section 5). Sec-
ondly, we consider a simple call-back mechanism [21]: the method cb we

604 0 Td
(I)Tj
5.39399 0 Td
(;j)Tj
/R80 8.60772 Tf
8.149o7t42j
54.29j
8.03955 0 Td
7.38read
(�)d
(mechanisy
53.5876 6Td
(of)Tj
n681 0 7.04757ction)Tj
qumils0 Td
(cTd
.)Tj
53.2mentatio86we

TABLE 10. Translation of object calculus

Types [fi:Ai;mj:Bj⇒Cj]
∗
i∈I,j∈J ≡ {fi:ref A

∗
i ;mj :B

∗
j⇒C∗

j }i,j

Terms (a:m(b))∗ ≡ a∗:m(b∗)

(a:f)∗ ≡ deref(a∗:f)

(a:f := b)∗ ≡ (a∗:f):=b∗

[fi=xi;mj=&(yj)�zj: bj]
∗
i∈I,j∈J

≡ let s = {fi = newAi(xi)}i∈I in MethA(s)({mj = �yj�zj: b
∗
j}j∈J)

where A ≡ [fi:Ai;mj :Bj⇒Cj]i∈I,j∈J

MethA ≡ �f(s):�m: {fi = s:fi;mj = �zj: (m:mj(f(s)(m)))(zj)}i∈I,j∈J

cessible via one of its �elds f. As such, this method may be changed at
run-time. To re�ect this, a sensible speci�cation of the call-back would be

of the form if method m satis�es a speci�cation S, then S holds of cb too,
where S ranges over a suitable class of speci�cations.

RECURSION THROUGH THE STORE: THE FACTORIAL. In the following pro-
gram let A � [fac : int) int], and B � [f : A, fac : int) int] (so B �: A).

The program computes the factorial, making the recursive calls through
the store. Suppose x is declared as integer variable, and consider the

program

let a : A = [fac = &(x)�n:n]

let b : B = [f = a; fac = &(x)�n. if n < 1 then 1 else n× (x:f:fac(n ,

in b:f := b; b:fac(x)

While we certainly do not claim that this is a particularly realistic example,
it does show how from the use of

higher-order store, following the general ideas of [44]: To prove that the
call in the last line indeed computes the factorial of x, consider the family
of predicates P = (Pw)w, where w ranges over worlds � fl:Ag and Pw �
Jint) intK w,

tion using a termination order).
Due to the (negative) occurrence of Pw′ in the de�nition of Pw exis-

tence of such a family P has to be established. This can be done along the
lines of Theorem 5.3: A relational structure R on the category C is given
by de�ning R(X) to be the type- and world-indexed admissible relations
on X, and de�ning

f : R ⊂ T iff

�

∀w ∈ W ∀A ∈ Type∀x ∈ RAw: fAw(x)↓ =⇒ fAw(x) ∈ TAw
∀w ∈ W ∀s ∈ RSt

w: fSw(s)↓ =⇒ fSw(s) ∈ T St
w

for all R 2 R(X), T 2 R(Y) and C-morphisms f : X ! Y . A functional
Φ is de�ned corresponding to the predicate P above,

f ∈ Φ(R)int⇒int

w ⇐⇒ ∀w′′ ≥ w′ ≥ w ∀n ≥ 0 ∀s ∈ Sw′ ∀m ∈ [[int]]w′′ ∀s′ ∈ Sw′′ :

(s:l ∈ Rint⇒int

w′ ∧ fw′(s; n) = 〈w′′; 〈s′;m〉〉 =⇒ m = n!)

at worlds w � fl:int) intg (the value of Φ at other types, as well as
on worlds not extending fl:int) intg, does not really matter and could
be chosen as the empty relation, for instance). This de�nition forms an
admissible action of the functor F : C ! C used to construct the model:

e− : R′ ⊂ R ∧ e+ : T ⊂ T ′ =⇒ F (e−; e+) : Φ(R) ⊂ Φ(R′) (15)

As in Section 5, property (15) suf�ces to establish well-de�nedness of the

predicates P (see [40]).
Assuming that l is the location allocated for �eld f, a simple �xed-point

induction shows

Jx:int; a:A . [f = a; fac = &(x)�n: if : : :] : BKw �s = 〈w′; 〈s′; o〉〉

such that w′ is w [fl:Ag, and o.fac 2 Pw′ .
Now let ŝ = s′[l := JB �: AKw′ (o)]. Thus, ŝ.l.fac = o.fac 2 Pw′ ; and if

ρ(x) � 0 we conclude

Jx:int; a:A; b:[f:A; fac:int⇒int] . b:f := b; b:fac(x) : intKw′ �[b := o]ŝ

= ŝ:l:facw′(ŝ; �(x))

= 〈w′′; 〈s′′; �(x)!〉〉

for some w′′ and s′′.

CALL-BACKS. As a second example, we treat the call-back example con-

sidered in [44]. Call-backs are used in object-oriented programming to
decouple the dependency between caller and callee objects. A typical ex-

ample is that of generic buttons in user interface libraries, described in
[21] by the command pattern: As the implementor of the button class can-

not have any knowledge about the functionality associated with a particu-
lar window button instance, it is assumed that there will be an object sup-

plied (at run-time) that encapsulates the desired behaviour for the button

34

pressed event, by providing a method execute. Apart from implementing

this interface, there are no further requirements on the supplied object.
In particular, no assumptions about its execute method are made. The

buttonPressed method of the button class will then react to events by for-
warding to the execute method. In terms of speci�cations, buttonPressed

would thus satisfy any speci�cation that execute satis�es.

The techniques developed in [44

over Sw′ for �xed s 2 Sw. Thus, the set
n

h ∈ J1 ⇒ 1Kw ∀s; s′: hw(s; {}) = 〈w′; 〈s′; {}〉〉 =⇒ 〈s; s′〉 ∈ T lw,w′

o

(16)

is admissible in J1) 1Kw. Now

TABLE 11. Typing of classes

B ≡ [ff′:AA′; mk:Bk⇒B′
k; mj:Cj⇒C ′

j]k∈K−J,j∈J

. c : class(f:A; mk:Bk⇒B′
k)k∈K Bj ≺: Cj ∀j ∈ J ∩K

this:B∗; yj :Cj . ej : C ′
j ∀j ∈ J C ′

j ≺: B′
j ∀j ∈ J ∩K

. class (x y){A′ f′ = y;C ′
j mj = �(yj:Cj):ej}j∈J extends c(x) :

class(ff′:AA′; mk:Bk⇒B′
k; mj :Cj⇒C ′

j)k∈K−J,j∈J

We introduce class types in order to express the well-formedness of
class tables constructed from the these class expressions,

class(fi:Ai;mj :Bj⇒B′
j)i,j

The intended meaning is that instances of a class of this type are objects
with type [fi:Ai,mj :Bj)B′

j]i;j . For the root class there is the obvious

introduction rule,

. Root : class()

and we have a type inference rule for subclassing as given in Table 11.
Here the object type B is the type of instances of this class; it is used as

type of the self parameter this when typing the method bodies ej . More
precisely, the record type B∗ is used for this purpose (recall that object

types are interpreted as record types, replacing each �eld declaration f:A
by f:ref A). Finally, note that re�nement of argument and result type of

methods during method rede�nition is allowed (�specialisation�).
Arising from the informal interpretation of classes and objects outlined

at the beginning of this subsection, the semantics of these class types is
already forced upon us:

class(f:A; mj :Bj⇒B′
j)

∗
j

≡ (A⇒{mj : B ⇒ Bj ⇒ B′
j}j⇒B) × {mj : B ⇒ Bj ⇒ B′

j}j

where B � [f:A,mj :Bj)B′
j]j stands for the type of instances. The �rst

component of this pair will contain the function instantiating objects from
the record of pre-methods, i.e., the second component. We reuse the re-
cursive functions MethB of Section 8.2 for this purpose. Formally, the
semantics of class expressions is obtained by providing a translation of
derivations into the procedural language of Section 2. For simplicity, we
omit the types here, since the class type of a class expression is in fact
uniquely determined. Thus,

Root∗ ≡ 〈� :Meth[]{}; {}〉

37

for the root

this use of re�exive domains seems unavoidable is witnessed by programs

using recursion through the store, such as the factorial example of Sec-
tion 8.3. However, the store parameter remains implicit in the semantics;

in particular, it does not appear in the source-level type of the methods of
an object and thus does not interfere with subtyping.

9 Polymorphism

We extend the language and the type system with (explicit) predicative,

prenex- (or �let�-) polymorphism, similar to the (implicit) polymorphism
found in Standard ML [32] and Haskell [38]. Essentially, the type system

is strati�ed into simple types and type schemes, with universally quanti�ed
type variables ranging over simple (non-polymorphic) types only; more-
over, the quanti�cation occurs only on top-level. In particular, function

arguments must have simple types. In contrast to ML, and in line with
subtyping on simple types considered in previous sections, we actually

consider bounded universal quanti�cation. The universal quanti�cation of
ML can be recovered by using a trivial upper bound, >, of which every

type is a subtype.
While this form of polymorphic typing may seem fairly restricted, it

has proved very popular and useful in practice: It provides a good com-
promise between expressiveness and type inference that is tractable in

many relevant cases, witnessed by the ML and Haskell languages.
Our theory goes through without any unexpected complications: After

presenting the syntax and type inference rules, the semantics of bounded
quanti�cation is given using coercion maps (following [12]). Coherence
of the extended system is proved by a logical relations theorem and in-

troducing bracketing maps, as in Sects. 5 and 6. In the last part of this
Section we introduce a polymorphic allocation operator. It is used in an-

other short case study where generic classes are considered.

9.1 Syntax and Typing

We assume a countably in�nite set of type variables, ranged over by iden-
ti�ers α, β, . . . , and a type > in order to denote trivial upper

type substitution is an assignment θ of monotypes for type variables. By a

monotype instance of a type scheme σ we mean a substitution instance σθ
without free type variables.

Contexts Γ may now contain subtype constraints of the form α �: A,
with at most one of these occurring for every α. Hence the derivations
of subtypings may depend on the context, and there is the obvious rule
to derive the subtyping Γ . α �: A from

ordered pointwise, and with the action on morphisms given by restriction.
The type > is interpreted as the one-element cpo, J>Kw = f�g. Further

let R>

TABLE 12. Semantics of type abstraction and application

TABLE 14. Semantics of terms

JΛ�≺:A: eKθ �� = 〈�; �B :�〈�
′; v〉: JeKθ[α:=B] ��

′〉

JxBKθ �� =

8

<

:

p(Bθ)(�
′; {||}) if JxKθ �� = 〈�′; p〉

∈ St ×
Q

B(St × Val * St × Val)
unde�ned otherwise

9.3 Coherence of the Polymorphic System

We extend the coherence proof to the enriched language. For the untyped2

semantics we introduce a

We prove the analogue of Lemma 5.5 with respect to environments.

Lemma 9.1 (Subtype Monotonicity). Let θ be a monotype substitution.

Suppose that ρ 2 JΓK�w and w′ � w. If ha, ui 2 RA�
w′ and P(Γ . A �: B)

then h(JP(Γ . A �: B)K�w ρ)w′(a), ui 2 RB�
w′ .

Proof. We consider the new case, where the derivation P(Γ.A �: B) ends
with an application of the rule for type variables. Thus, A � α is a type
variable and s

Γ; �≺:B;Γ′ . � ≺: B

{

θ,w

� = �(cα)

The assumption ρ 2 JΓK�w

� either JΓ . e : AK� w ρs" and JeK� ησ ", or

� there are w′ � w, s′, a, σ′, u s.t.JΓ . e : AK� w ρs = hw′, hs′, aii # and

JeK� ησ = hσ′, ui# s.t. hs′, σ′i 2 RSt
w′ and ha, ui 2 R��

w′ .

Proof. We consider the new cases, for type abstraction and type applica-

tion.

� (Type Abstraction) From the semantics it is immediate that both

JΓ . e : AKθ,w �s↓ and JeKθ ��↓

and we must show ha, ui 2 R
(∀ immediate

1. for all x 2 JτKw . hx, φ�
w(x)i 2 R�

w

2. for all hx, yi 2 R�
w. x = ψ�

w(y)

Proof. The proof is by induction on the number of universal quanti�ers in

the type scheme τ . For simple types the claims are proved in Theorem 5.7.
Now consider the case where τ is of the form 8α�:A.τ ′.

1. Recall that

�τw(x) = �B�〈�; v〉:

8

>

>

<

>

>

:

〈�St
w′′(s); �

τ [B/α]

w′′ (b)〉
if B ≺: A; dom(�) = w′; St

w′ (�)↓ and

xw′B(St
w′ (�); w′) = 〈w′′; 〈s; b〉〉

unde�ned otherwise

where γw′ = λw′′≥w′ .ψB
w′′ � φA

w′′ 2 JA (BKw. Let w′ � w, B �: A, let

δ 2 JB (AKw′ and hs, σi 2 RSt
w′ . We note

s = St
w′(�) (by Theorem 5.7)

� = w′ (by Corollary 9.2)

Moreover, since φSt
w′′ and φ

� ′[B=�]
w′′ are total maps,

(�τw(x))B(�; {||})↑ ⇐⇒ aw′B(s; �)↑

It remains to consider the case where both terms are de�ned. Suppose
there are w′′ � w, s 2 Sw′′ and b 2 Jτ ′[B/α]Kw′′ ,

aw′B(s; �) = 〈w′′; 〈s′; b〉〉

(�τw(x))B(�; {||}) = 〈�St
w′′ (s′); �

τ ′[B/α]

w′′ (b)〉

By Theorem 5.7, hs′, φSt
w′′(s′)i 2 RSt

w′′ , and by induction hypothesis,

hb, φ
� ′[B=�]
w′′ (b)i 2 R

� ′[B=�]
w′′ (b). Thus we have proved hx, φ�

w(x)i 2 R�
w.

2. Suppose hx, yi 2 R�
w. By de�nition,

 τw(y) = �w′≥w �B≺:A �〈s; �〉:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

〈 St
w′(�161 -11.328Tj
/7799 Td80 8.60772 Tf
95955 0 Td
(K)Tj
 7.1731 Tf
6 3.
(R4
(0)Tj
/R71 8.60772 Tf
3.84001 -3.6 Td
([)Tj
/v(K)Tj
 7.1731 Tf
6 3Td
(By)Tj
19.6691 0)Tj
/R71 8.60772 Tf
12.4726 0 Td
(])Tj
/R77 8.60772 5e

w� �

′′ are

where

f = �w′ ≥ w �A�〈s′; �〉: J .�x:newA x : A⇒ ref AKθw′ s
′

g = �A�〈�′; v〉: J�x:newA xKθ �
′ (20)

To this end, suppose w′ � w, A is any monotype, δ 2 JA (>Kw′ is

the unique coercion from A to >, and let hs′, σ′i 2 RSt
w′ . By induction

hypothesis and the fact that the term λx.newA x is a value it follows that

J .�x:newA x : A⇒ ref AKθ s
′ = 〈w′′; 〈s′′; a〉〉

J�x:newA xKθ �
′ = 〈�′′; u〉

with hs′′, σ′′i 2 RSt
w′′ and ha, ui 2 RA⇒ref A

w′′ . Thus from the de�nition in
(20), f and g are in relation as required.

AN APPLICATION: GENERIC CLASSES. The concept of polymorphism is
not only used in functional languages, but

10 Related Work

Apart from Levy’s work [29, 30] which we built

11 Conclusions and Future Work

We have extended a model of general references with subtyping, to ob-

tain a semantics of imperative objects. While the individual facts are
much more intricate to prove than for the functional language considered

in [45], the overall structure of the coherence proof is almost identical to
loc. cit. This suggests it could be interesting to work out the general condi-

tions needed for the construction (for example, using the setting of [35]).
In a different direction, we can extend the language with a more ex-

pressive type system: Recursive types and polymorphism feature promi-

nently in the work on semantics of functional objects (see [14]). Here we
have shown that the techniques to establish coherence scale well to the ex-

tension of the type system with ML-like (prenex) polymorphism [31, 50]
� essentially because there is no interaction with the store. We are less

optimistic about polymorphism in general; the combination of second-
order lambda calculus and higher-order storage certainly appears to be

challenging. In [30] it is suggested that the construction of the intrinsic
model also works for a variant of recursive types. We haven’t considered

the combination with subtyping yet, but do not expect any dif�culties.
Finally, we plan to develop (Hoare-style) logics, with pre- and post-

conditions, for languages involving higher-order store. As a starting point,
we are currently trying to adapt the program logic of [3] to the language
considered here.

references. In Proceedings 13th Annual IEEE Symposium on Logic in Computer Science,
pages 334�344. IEEE Computer Society Press, 1998.

[6] A. J. Ahmed, A. W. Appel, and R. Virga. A strati�ed semantics of general references
embeddable in higher-order logic. In Proceedings of 17th Annual IEEE Symposium Logic
in Computer Science, pages 75�86. IEEE Computer Society Press, 2002.

[7] N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for storage.
In To appear in Proceedings of the Seventh International Conference on Typed Lambda Cal-
culi and Applications (TLCA ’05), Lecture Notes in Computer Science. Springer, 2005.

[8] V. Bono and M. Bugliesi. Interpretations of extensible objects and types. In Proceedings
of the 12th Int. Symposium on Fundamentals of Computing, volume 1684 of Lecture
Notes in Computer Science, pages 112�123. Springer, 1999.

[9] V. Bono, A. J. Patel, V. Shmatikov, and J. C. Mitchell. A core calculus of classes and
objects. In 15th Conference on the Mathematical Foundations of Programming Semantics,
volume 20 of Electronic Notes in Computer Science, Apr. 1999.

[10] G. Boudol. The recursive record semantics of objects revisited. Journal of Functional
Programming, 14(3):263�315, May 2004.

[11] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the
past: Adding genericity to the Java programming language. ACM SIGPLAN Notices,
33(10):183�200, Oct. 1998.

[12] V. Breazu-Tannen, T. Coquand, G. Gunter, and A. Scedrov. Inheritance as implicit coer-
cion. Information and Computation, 93(1):172�221, July 1991.

[13] K. B. Bruce. A paradigmatic object-oriented programming language: Design, static
typing and semantics. Journal of Functional Programming, 4(2):127�206, Apr. 1994.

[14] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Information
and Computation, 155(1/2):108�133, Nov. 1999.

[15] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. Mitchell. F-bounded polymorphism
for object-oriented programming. In Proceedings 4th International Conference on Func-
tional Programming Languages and Computer Architecture, pages 273�280. ACM Press,
1989.

[16] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An extension of System F with
subtyping. Information and Computation, 109(1�2):4�56, 1994.

[17] W. Cook and J. Palsberg. A denotational semantics of iinheritance and its correctness.
Information and Computation, 114(2):329�350, Nov. 1994.

[18] W. R. Cook. A Denotational Semantics of Inheritance. Ph.D.

imperative higher-order functions. In Proceedings LiCS’05, 2005. To appear.

[25] A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects.
In Proc. Lics2002, 17th Annual Symposium on Logic in Computer Science, pages 101�
112. IEEE Computer Society Press, 2002.

[26] S. N. Kamin and U. S. Reddy. Two semantic models of object-oriented languages. In
C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Program-
ming: Types, Semantics, and Language Design, pages 464�495. MIT Press, 1994.

[27] J. Laird. A categorical semantics of higher-order store. In R. Blute and P. Selinger,
editors, Proceedings of the 9th Conference on Category Theory and Computer Science,
CTCS ’02, volume 69 of Electronic notes in Theoretical Computer Science, pages 1�18.
Elsevier, 2003.

[28] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(4):308�
320, Jan. 1964.

[29] P. B. Levy. Possible world semantics for general storage in call-by-value. In J. Brad�eld,
editor, CSL: 16th Workshop on Computer Science Logic, volume 2471 of Lecture Notes in
Computer Science. Springer, 2002.

[30] P. B. Levy. Call-By-Push-Value. A Functional/Imperative Synthesis, volume 2 of Semantic
Structures in ComputationCKluwr L20054[301 P. Mitlnr o

volume 3444 of Lecture Notes in Computer Science, pages 264�279. Springer, 2005.

[44] B. Reus and T. Streicher. Semantics and logic of object calculi. Theoretical Computer
Science, 316:191�213, 2004.

[45] J. C. Reynolds. What do types mean? � From intrinsic to extrinsic semantics. In
A. McIver and C. Morgan, editors, Essays on Programming Methodology. Springer, 2002.

[46] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain
equations. SIAM Journal on Computing, 11(4):761�783, Nov. 1982.

[47] I. Stark. Names, equations, relations: Practical ways to reason about new. Fundamenta
Informaticae, 33(4):369�396, April 1998.

[48] R. D. Tennent and D. R. Ghica. Abstract models of storage. Higher-Order and Symbolic
Computation, 13(1�2):119�129, Apr. 2000.

[49] L. Thorup and M. Tofte. Object-oriented programming and standard ML. In Record of
the 1994 ACM SIGPLAN Workshop on Standard ML and its Applications, 1994.

[50] A. K. Wright. Simple imperative polymorphism. LISP and Symbolic Computation,
8(4):343�355, Dec. 1995.

[51] Zhang and Nowak. Logical relations for dynamic name creation. In 17th Workshop on
Computer Science Logic (CSL 2003), volume 2803 of Lecture Notes in Computer Science,
pages 575�588. Springer, 2003.

54

