
UNIVERSITY OF SUSSEX

2 William Ferreira, Matthew Hennessy and Alan Jeffrey

is given in terms of a reduction relation between configurations, multi-sets of λcv

closed expressions or programs. Unfortunately this operational semantics is not

compositional, in that the behaviour of a λcv expression, or indeed configuration,

is not determined by that of its constituents.

Here we give a compositional operational semantics in terms of a labelled

transition system for µCML programs. This not only describes the evaluation

steps of programs, as in [30], but also their communication potentials, in terms

of their ability to input and output values along communication channels.

We then proceed to demonstrate the usefulness of this compositional oper-

ational semantics by using it to define a version of weak observational equiv-

alence, [20], suitable for µCML. We prove that, modulo the usual problems

associated with the choice operator of CCS, our chosen equivalence is preserved

by all µCML contexts and therefore may be used as the basis for reasoning about

CML programs. In this paper we do not investigate in detail the resulting theory

but confine ourselves to pointing out some of its salient features; for example

standard identities one would expect of a call-by-value λ-calculus are given and

we also show that certain algebraic laws common to process algebras, [20], hold.

We now explain in more detail the contents of the remainder of the paper.

IN SECTION 2 we describe the language µCML, a subset of CML. It is a typed

language, with base types for channel names, booleans and integers, and type

constructors for pairs, functions and delayed computations; these last are called

Event types. It has the standard constructs and constants associated with the base

types and with pairs and functions. In addition it has a selection of the CML

constructs and constants for manipulating delayed computations; spawn gener-

6 William Ferreira, Matthew Hennessy and Alan Jeffrey

fst : A∗B→A transmitA : chan∗A→unitevent

snd : A∗B→B receiveA : chan→Aevent

add : int∗ int→ int choose : Aevent∗Aevent→Aevent

mul : int∗ int→ int spawn : (unit→unit)→unit

leq : int∗ int→bool wrap : Aevent∗ (A→B)→Bevent

sync : Aevent→A never : unit→Aevent

always : A→Aevent

FIGURE 1

8

10 William Ferreira, Matthew Hennessy and Alan Jeffrey

12 William Ferreira, Matthew Hennessy and Alan Jeffrey

Since Av immediately evaluates to the constant v we have:

Av
τ−→ v

The choice construct choosee is a choice between delayed computations as

choose has the type Aevent ∗Aevent→Aevent. To interpret it we introduce a

new choice constructor ge1⊕ge2 where ge1 and ge2 are guarded expressions of

the same type. Then choosee proceeds by evaluating e until it can produce a

value, which must be of the form 〈[ge1], [ge2]〉, and the evaluation continues by

constructing the delayed computation [ge1⊕ge2]. This is represented by the rule:

e
√〈[ge1],[ge2]〉−−−−−−−→ e′

choosee
τ−→ e′ ‖ [ge1⊕ge2]

The notation⊕, introduced in [30], is unfortunate, as it is used in [14] to represent

the internal choice between processes whereas here it represents external choice:

we have the following auxiliary rules , which are the same as CCS summation:

ge1
α

16 William Ferreira, Matthew Hennessy and Alan Jeffrey

For many purposes, strong bisimulation is too fine an equivalence as it is sensitive

to the number of reductions performed by expressions. This means it will not

even validate elementary properties of β-reduction such as Id 0 = 0 where Id

denotes the identity function (fn x⇒x). We require the looser weak bisimulation

which allows τ-actions to be ignored.

This in turn requires some more notation. Let
ε=⇒ be the reflexive transitive

closure of τ−→, and let l=⇒ be ε=⇒ l−→ (i.e. any sequence of silent action followed

by an l action). Note that we are not allowing silent actions after the l action. Let
l̂=⇒ be

ε=⇒ if l = τ and
l=⇒ otherwise. Then R is a first-order weak simulation

iff it is structure-preserving and the following diagram can be completed:

e1

e

18 William Ferreira, Matthew Hennessy and Alan Jeffrey

e1 =h e2 e1 =h e2

as where l1 ≈hl
l2

e′1

l1

?

e′1

l1

?

≈h e′2

l2
�

wwwwwwww

PROPOSITION 3.5. =h is an equivalence.

PROOF. Similar to the proof of Proposition 3.1. 2

This attempt fails, however, since it only looks at the first move of a process, and

not at the first moves of any processes in its transitions. Thus, the above µCML

counter-example for ≈h being a congruence also applies to =h. This failure was

first noted by Thomsen [32] for CHOCS.

Thomsen’s solution to this problem is to require that τ-moves can always be

matched by at least one τ-move, which produces his definition of an irreflexive

simulation as a structure-preserving relation where the following diagram can be

completed:

e1 R e2 e1 R e2

as where l1 R l l2

e′1

l1

?

e′1

l1

?

R e′2

l2
�

wwwwwwww

Let ≈i be the largest irreflexive bisimulation.

PROPOSITION 3.6. ≈i is a congruence.

PROOF. The proof that ≈i is an equivalence is similar to the proof of Proposi-

tion 3.1. The proof that it is a congruence is similar to the proof of Theorem 4.7

in the next section. 2

However this relation is rather too strong for many purposes, for example

add(1,2) 6≈i add(1,add(1,1)) since the rhs can perform more τ-moves than the

lhs. This is similar to the problem in CHOCS where a.τ.P 6≈i a.P.

In order to find an appropriate definition of bisimulation for µCML, we ob-

serve that µCML only allows ⊕ to be used on guarded expressions, and not on

arbitrary expressions. We can thus ignore the initial τ-moves of all expressions

except for guarded expressions. For this reason, we have to provide two equiva-

lences: one on terms where we are not interested in initial τ-moves, and one on

terms where we are.

A Theory of Weak Bisimulation for Core CML 19

A pair of closed type-indexed relations R = (R n,R s) form a hereditary sim-

ulation (we call R n an insensitive simulation and R s a sensitive simulation) iff

R s is structure-preserving and we can complete the following diagrams:

e1 R n e2 e1 R n e2

as where l1 R sl l2

e′1

l1

?

e′1

l1

?

R n◦ e′2

l̂2
�

wwwwwwww

and:

e1 R s e2 e1 R s e2

as where l1 R sl l2

e′1

l1

?

e′1

l1

?

R n◦ e′2

l2
�

wwwwwwww

20 William Ferreira, Matthew Hennessy and Alan Jeffrey

clusions:

∼1 ⊂

- ≈1

∼h

?

∩

⊂

- ≈i ⊂

- ≈s ⊂

- ≈n

?

∩

=h

?

∩

⊂

- ≈h

?

∩

PROOF. For each inclusion, show that the first bisimulation satisfies the condition

required to be the second form of bisimulation. To show that the inclusions are

strict, we use the following examples:

(fn x⇒add(1,2)) ∼h 6∼1 (fn x⇒add(2,1))

1 ≈1 6∼1 letx= 1 inx

choose(receivek, tau(receivek)) ≈i 6∼h tau(receivek)

add(1,2) ≈s 6≈i add(1,add(1,1))

1 ≈n 6≈s letx= 1 inx

never() ≈h 6≈n tau(never())

1 ≈h 6=h letx= 1 inx

where:

tau = fn x⇒wrap(always x, sync)

22 William Ferreira, Matthew Hennessy and Alan Jeffrey

and since R

24 William Ferreira, Matthew Hennessy and Alan Jeffrey

refinement, R̂ be defined:

R̂
n
= {(Dn[~e],Dn

28 William Ferreira, Matthew Hennessy and Alan Jeffrey

PROPOSITION 4.5. If R is an equivalence then R •∗ is symmetric.

PROOF. A variant of the proof in [18].

It suffices to show that if e R •s f then f R •s∗ e, and that if e R •n f then

f R •n∗ e, which we show by induction on e. If e R •s f , then either:

• e = D[~e] R̂ •
s

D[~f] R s◦ f and ei R •s fi, so by induction fi R •s∗ ei, so f R̂
s

D[~f]D R̂
s∗
[~e] = e, or

• e = fix(x = fn y⇒ e′) R̂ •
s

fix(x = fn y⇒ f ′) R s◦ f and e′ R •n f ′, so by

induction f ′ R •n∗ e′, so f R̂
s

fix(x= fn y⇒ f ′) R •s∗ fix(x= fn y⇒e′) = e.

The proof for R n is similar. 2

We can use this result to show that ≈•∗ is a bisimulation.

PROPOSITION 4.6. When restricted to closed expressions of µCML+, ≈•∗ is a

hereditary bisimulation.

PROOF. By Proposition 4.4,≈• is a hereditary simulation, and so≈•∗ is a hered-

itary simulation. By Proposition 4.5, ≈• is symmetric, and so ≈• is a hereditary

bisimulation. 2

This gives us the result we set out to prove.

THEOREM 4.7. ≈s is a congruence, and ≈n is an uneventful congruence.

PROOF. From Proposition 4.6, ≈• is a hereditary bisimulation, so ≈• ⊆≈◦, and

by Proposition 4.2≈◦⊆≈•, so≈• and≈◦ are the same relation. Since ≈̂• ⊆≈•,
we have the desired result by Proposition 4.1. 2

5 Properties of Weak Bisimulation

In this section, we show some results about program equivalence up to hereditary

weak bisimulation. Some of these equivalences are easy to show, but some are

trickier, and require properties about the transition systems generated by µCML+.

Although much remains to be done on elaborating the algebraic theory of µCML

programs we hope that the results in this section indicate that this equivalence can

form the basis of a useful theory which generalises those associated with process

algebras and functional programming.

We have given an operational semantics to µCML by extending it with new

constructs, most of which correspond to constructs found in standard process

algebras. These include a choice operator ⊕, a parallel operator ‖ and suitable

versions of input and output prefixing, [20]. The prefixes in µCMLcv have a

A Theory of Weak Bisimulation for Core CML 29

slightly unusual syntax—their equivalents in CCS are given as:

CCS prefix µCMLcv equivalent

k?x.P k?⇒ fn x⇒P

k!v.P k!v⇒ fn x⇒P

τ.P A()⇒ fn x⇒P

We now examine the extent to which ⊕ and ‖ act like choice and parallel opera-

tors from a process algebras

We can find bisimulations for the following (and hence they are sensitive

bisimilar):

Λ‖ e ∼1 e

(e1 ‖ e2)‖ e3 ∼1 e1 ‖ (e2 ‖ e3)

(e1 ‖ e2)‖ e3 ∼1 (e2 ‖ e1)‖ e3

Thus ‖ satisfies many of the standard laws associated with a parallel operator in a

process algebra. However it is not in general symmetric because of its interaction

with the production of values:

v‖ e ∼1 e

For example:

1‖Λ ∼1 Λ Λ‖1∼1 1

This means that we can view the parallel composition of processes as being of

the form:

(
∥∥
i

ei)‖ f

where the order of the ei is unimportant. Note that it is important which is the

right-most expression in a parallel composition, since it is the main thread of

computation, and so can return a value, which none of the other expressions can.

The choice operator of µCML+ also satisfies the expected laws from process

algebras, those of a commutative monoid, although it can only be applied to

guarded expressions:

Λ⊕ge ∼1 ge

(ge1⊕ge2)⊕ge3 ∼1 ge1⊕ (ge2⊕ge3)

ge1⊕ge2 ∼1 ge2⊕ge1

This means that we can view the sum of guarded expressions as being of the

form: ⊕

i

gei

30 William Ferreira, Matthew Hennessy and Alan Jeffrey

where the order of the gei is unimportant.

In fact guarded expressions can be viewed in a manner quite similar to the

sum forms used in the development of the algebraic theory of CCS, [20]. We can

find bisimulations for the following (and hence they are sensitive bisimilar):

(ge1⊕ge2)⇒v ∼1 (ge1⇒v)⊕ (ge2⇒v)

ge⇒ fn x⇒x ≈s ge

Av ≈s A()⇒ fn x⇒v

From this, we can show, by structural induction on that all guarded expressions

are of a given form:

ge≈s
⊕

i

gei }e

34 William Ferreira, Matthew Hennessy and Alan Jeffrey

λcv expressions. Instead of multi-sets we use configurations of µCMLcv expres-

sions given by the grammar:

C ∈Con f ::= e |C ‖C | Λ
Note that configurations are restricted forms of µCML+ expressions. This will

facilitate the comparison between the two semantics since it can be carried out

for configurations rather than µCML expressions.

The semantics of [30] is expressed as a reduction relation =⇒ between con-

figurations and reductions have four independent sources. The first involves a

sequential reduction within an individual µCML expression and this in turn is

defined using another reduction relation 7−→; the second is the spawning of new

computation threads which results in an increase in the number of components of

the configuration; the third is communication between two expressions and the

last is required to handle the always construct. We need notation for each of these

and we consider them in turn.

The operational rules for sequential reduction are defined in context in the

style of Wright and Felleisen [33], and the contexts that permit reduction are

given by the following grammar:

E ::= [·] | E e | vE | cE | (E,e) | (v,E) | letx = E ine | if E theneelsee

The relation 7−→ is defined to be the least relation satisfying the following rules:

E[cv] 7−→ E[δ(cv)] (c 6∈ {spawn, sync}) const

E[(fix(x = fn y⇒e))v] 7−→ E[e[fix(x = fn y⇒e)/x][v/y]] beta

E[letx= v ine] 7−→ E[e[v/x]] let

E[(v,w)] 7−→ E[〈v,w〉] pair

Here each rule corresponds to a basic computation step in a sequential call-by-

value language. We should point out that the last rule does not appear in [30], it is

implicit in Reppy’s statement “the syntactic class of the term (v1,v2) is either Exp

or Val; this ambiguity is resolved in favour of Val.” We have made the grammar

unambiguous, and have added an explicit reduction rule for resolving ambiguity.

Note that the definition of 7−→ is not compositional: the reductions of an

expression are not defined in terms of the reductions of its sub-expressions. The

following Lemma will be useful in later proofs and shows that we can recover

compositionality.

LEMMA 6.1. If e 7−→ e′ then E[e] 7−→ E[e′].

PROOF. By examination of the proof of the transition e 7−→ e′. 2

To capture reductions which involve communication it is necessary to define a

notion of when two guarded expressions may give rise to a communication. For

A Theory of Weak Bisimulation for Core CML 35

k!v
k
⊲⊳ k? with ((),v)

ge
k
⊲⊳ ge′ with (e,e′)

ge
k
⊲⊳ ge′⇒v with (e,ve′)

ge
k
⊲⊳ ge′ with (e,e′)

ge
k
⊲⊳ ge′⊕ge′′ with (e,e′)

ge
k
⊲⊳ ge′′ with (e,e′′)

ge
k
⊲⊳ ge′⊕ge′′ with (e,e′′)

ge
k
⊲⊳ ge′ with (e,e′)

ge′
k
⊲⊳ ge with (e′,e)

F

36 William Ferreira, Matthew Hennessy and Alan Jeffrey

tion 2 as the µCML+ semantics and we now compare them. In order to do this,

we extract a labelled transition system from the µCMLcv semantics by defining:

C
τ7−→C′ iff C =⇒C′

C
√

v7−→C′ iff C =C′′ ‖ v and C′ =C′′ ‖Λ (up to ‖ associativity and Λ left unit)

C
k!v7−→C′ iff C ‖ k?=⇒C′ ‖ v

C
k?x7−→C′ iff C ‖ k!x=⇒C′ ‖ ()

We will then show that this labelled transition system is weakly bisimilar to the

µCML+ lts:

THEOREM 6.2. The µCMLcv semantics of a configuration is weakly bisimilar to

its µCML+ semantics.

The remainder of this section is devoted to proving this result. Although the style

of presentation of these two semantics are very different the resulting relations

are very similar and there are essentially only two sources for the differences.

The first is that certain reductions in µCMLcv, when modelled in the µCML+ se-

mantics, require in addition some ‘housekeeping’ reductions. A typical example

is the reduction:

(fn x⇒e)v 7−→ e[v/x].

In µCML+ this requires two reductions:

(fn x⇒e)v τ−→ letx = v ine
τ−→ e[v/x]

This problem is handled by identifying the set of ‘housekeeping’ reductions, such

as the second reduction above, within the µCML+ semantics . These turn out to

be very simple and we can work with ‘housekeeping normal forms’ in which no

further housekeeping reductions can be made.

The second divergence between the semantics concerns the treatment of

spawn; expressions in µCML+ may spawn new processes which give rise to

38 William Ferreira, Matthew Hennessy and Alan Jeffrey

The equivalence ≡ is a strong first-order bisimulation which respects house-

keeping, that is a relation R where we can complete the diagram:

e1 R e2 e1 R e2

as

e′1

τH

?

e′1

τH

?

R e′2

τH

?

and similarly for R −1.

PROPOSITION 6.6. ≡ is a strong first-order bisimulation which respects house-

keeping.

PROOF. See the Appendix. 2

We can also show a very strong correspondence between reductions of

µCMLcv configurations, and their tidy normal forms.

PROPOSITION 6.7. If C
τH−→∗ e and e is tidy, then the following diagrams can

be completed:

C

40

42 William Ferreira, Matthew Hennessy and Alan Jeffrey

clude channel generation it will be necessary to adopt the context bisimulation

equivalence, originally developed in [31]. In short although semantic theories

are being developed independently for these languages many of the techniques

developed will find more general application.

Appendix

This section is devoted to the proof of Proposition 6.6 and Proposition 6.7. But first we need some

auxiliary results. The following three Propositions state

46 William Ferreira, Matthew Hennessy and Alan Jeffrey

[14] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[15] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[16] Sören Holmström. PFL: A functional language for parallel programming. In Proc. Declarative

Programming Workshop, pages 114–139, 1983.

[17] Douglas Howe. Equality in lazy computation systems. In Proc. LICS 89, pages 198–203, 1989.

[18] Douglas Howe. Proving congruence of simulation orderings in functional languages. Unpub-

lished manuscript, 1992.

[19] Alan Jeffrey. A fully abstract semantics for a concurrent functional language with monadic

