
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Trust and Partial Typing in Open

Systems of Mobile Agents

James Riely and Matthew Hennessy



Trust and Partial Typing in Open Systems of Mobile

Agents

JAMES RIELY AND MATTHEW HENNESSY

ABSTRACT. We present a partially-typed semantics for Dπ, a distributed π-calculus. The se-

mantics is designed for mobile agents in open distributed systems in which some sites may harbor

malicious intentions. Nonetheless, the semantics guarantees traditional type-safety properties at

good locations by using a mixture of static and dynamic type-checking. We show how the se-

mantics can be extended to allow trust between sites, improving performance and expressiveness

without compromising type-safety.

1 Introduction

In [13] we presented a type system for controlling the use of resources in a dis-

tributed system, or network. The type system guarantees two properties:

� resource access is always safe, e.g. integer resources are always accessed

with integers and string resources are always accessed with strings, and

� resource access is always authorized, i.e. resources may only be accessed by

agents that have been granted permission to do so.

While these properties are desirable, they are properties of a network as a whole.

In open systems it is impossible to verify the system as a whole, e.g. to “type-check



Trust and Partial Typing in Open Systems of Mobile Agents



Trust and Partial Typing in Open Systems of Mobile Agents 3

corrupted; an example of this phenomenon is described in Section 3.2. Technically



Trust and Partial Typing in Open Systems of Mobile Agents 4

Table 1 Syntax of names e, values u, patterns X, threads P, and networks M.

e ::= k Location

a Resource

X;Y ::= x Variable

(X1; ::; Xn) Tuple

P;Q;R ::= stop Termination

P jQ Composition

(νe:T)P Restriction

gotou:P Movement

u!hviP Output

u?(X:T)P Input

�P Replication

if u = v then P else Q Matching

u;v;w ::= bv Base Value

e Name

x Variable

(u1; ::; un) Tuple

M;N ::= 0 Empty

M jN Composition

(νke:T)N Restriction

kJPK Agent

contain the main contributions of the paper. Section 4 presents the formalization

of filters and dynamic typing, showing how these are incorporated into the run-

time semantics. In Section 5 this framework is extended to include trust. Both

sections include several examples, as well as proofs of Subject Reduction and Type

Safety. In Section 6 we discuss the design of the semantics and describe some of

its limitations, pointing to topics for further research. The paper ends with a brief

survey of related work.

2 The Language and Standard Typing

In this section we review the syntax and standard semantics of Dπ. For a full

treatment of the language, including many examples, see [13]. Our formalization

of the language differs slightly from that of [13], as discussed in the conclusion.

2.1 Syntax

The syntax is given in Table 1, although discussion of types, T, is postponed to

Section 2.3. The syntax is parameterized with respect to the following syntactic

sets, which we assume to be disjoint:

� Base, of base values, ranged over by bv,

� Loc, of location names, ranged over by k–m,

� Res, of resource names, ranged over by a–d,

� Var, of variables, ranged over by x–z.

Names, e, include location names and resource names. Values, u–w, include base

values, names, variables and tuples of values. We occasionally use the metavari-

ables u–w to range over restricted classes of values, such as Var[Loc or Var[Res;



Trust and Partial Typing in Open Systems of Mobile Agents 5

such cases should be clear from context. Patterns, X–Y, include variables and tu-

ples of patterns; we require that patterns be linear, i.e. that each variable appear at

most once.

The main syntactic categories of the language are as follows:

� Threads, P–R, are terms of the ordinary polyadic π-calculus [17] with addi-

tional constructs for movement and restriction of locations.

� Agents, kJPK, are located threads.

� Networks, M–N, are collections of agents combined using the static combi-

nators of composition and restriction.

As an example of a network, consider the term:

`J



Trust and Partial Typing in Open Systems of Mobile Agents 6

Table 2 Standard Reduction





Trust and Partial Typing in Open Systems of Mobile Agents 8

On tuples, the definition is by homomorphic extension:

eS <

:

eT if 8i : Si <: Ti

K[

eA] <

: L[

eB] if K <

: L and eA <

:

eB

An important property of the subtyping preorder is that it has a partial meet

operator u.

DEFINITION 2.1. A partial binary operator u on a preorder (S;�) is a partial meet

operator if it satisfies the following for every r, s, t 2 S:





Trust and Partial Typing in Open Systems of Mobile Agents 10

For networks and threads, the main rules of interest are for agents and move-

ment. For the agent `JPK to be well-typed, P must be well-typed at location `;

whereas for the thread gotou:P to be well-typed at some location w, P must be

well-typed at location u.



Trust and Partial Typing in Open Systems of Mobile Agents 11

With this notation the rule for restriction in networks, for example, should be

easily understandable. The network (νke:T)N is well-typed with respect to Γ, Γ `

(νke:T)N, if e is new to Γ and N is well-typed with respect to Γ extended at k by

the type information in declaration e:T, i.e. Γufke:Tg ` N.

The rule for matching allows the combination of capabilities available on dif-

ferent instances of a location name. Note that the rule may only be applied when

SuT is defined. In the case that S = T, the rule degenerates to the standard rule for

conditionals:
Γ `w u:T; v:T; P; Q

Γ `w if u = v then P else Q

The extra generality of the rule is necessary to type threads such as the following:

a?(z[x]) b?(w[y]) if z = w then gotoz:
�

x?(u) y!hui
�

This thread receives two remote channels from different sources, then forwards

messages from one channel to the other. Further examples are given in [13] where

we argue that the more general rule is crucial for typing many practical applica-

tions.

The typing system satisfies several standard properties such as type special-

ization, weakening and a substitution lemma, as described in [13]. The following

result establishes that well-typed terms are free of runtime errors throughout their

execution.

THEOREM





Trust and Partial Typing in Open Systems of Mobile Agents 13

Table 4 Partial Typing Relation

All rules from Table 3 but those for restriction (ν)

(thread-bad)
Γ(w) = lbad

Γ `w P
(thread-new

g

)

T 6= lbad

e =2 fn(Γ)

Γ;

(e)fwe:Tg `w P

Γ `w (νe:T)P

(net-new
b

)

Γ(k) = lbad

` =2 fn(Γ)

Γuf`:lbadg ` P



Trust and Partial Typing in Open Systems of Mobile Agents 14

The partial typing relation is defined in Table 4. All of the rules of the standard

type system carry over to the partial typing system but for those concerning restric-

tion, which require an additional side condition. Most important, the introduction

of the rule (thread-bad) allows untyped locations to have truly arbitrary behavior,

including the ability to (attempt to) send malicious agents to good locations. Thus

the partial typing relation validates the judgment Γ ` mJgotok:a!htiK, with Γ as

given in the previous paragraph.

The rule (net-new
b

) says that locations created at untyped locations should

themselves be untyped. This rule is required to maintain well-typing under reduc-

tions such as:

kJ(ν`:L)goto`:PK 7�! (νk`:L)kJgoto`:PK 7�! (νk`:L)`JPK

The rules (thread-new
g

) and (net-new
g

) are as in the standard type system, but

require that typed locations not create untyped ones. This “reasonableness require-

ment” is necessary to establish Type Safety, as formulated in Theorem 4.10.

3.2 An Example

Consider the following (partial) type environment:

Γ =

8

>

>

>

<

>

>

>

:

k : loc fa : reshintig

` : loc
n

b : reshloc[reshbooli]i

c : reshloc[reshinti]i

o

m : lbad

9

>

>

>

=

>

>

>

;

Here we have three locations, k, ` and m, the first two of which are typed, and the

last untyped. Of the good (typed) sites, we know that k has an integer channel a,

and ` has two channels: c, which communicates dependent tuples with the second

element being an integer channel; and b, which communicates dependent tuples

with the second element being boolean channels.

Consider a system with two agents at `, waiting to receive data on channels c

and b, respectively. The first agent will expect, as the second element of the tuple it

receives, the name of an integer channel, whereas the second will expect the name

of a boolean channel. In addition suppose that there are agents at k and m poised to

send data to ` on channels c and b, respectively. Such a system is the following:

P = `Jc?hw[y]i gotow:y!h0iK

j `Jb?hz[x]i gotoz:x!htiK

j kJgoto`:c!hk[a]iK

j mJgoto`:b!hk[a]iK

Here the agents at ` and k are all quite reasonable; they could be typed using the

standard type system of Table 3. The final agent, at m, however, flagrantly violates



Trust and Partial Typing in Open Systems of Mobile Agents 15

the types of channels a and b; this agent intends to send an integer channel (a)

where a boolean channel is expected (on b).

One can easily see that, using the standard typing system (without lbad), for

no ∆ do we have ∆ ` P. This is because channel a at k may be bound to either y

or x, and these identifiers are subject to conflicting uses. There is no assignment

of standard types to a, b and c that satisfies all of the constraints given in P. On

the other hand, using the partial typing system, we have Γ ` P. This well typing,

however, is not preserved by reduction.

First consider the agents communicating on c. Using standard reduction, as

defined in Table 2, these agents reduce as follows.

`Jc?hw[y]i gotow:y!h0iK j kJgoto`:c!hk[a]iK (1)

�! `Jc?hw[y]i gotow



Trust and Partial Typing in Open Systems of Mobile Agents 16

It is worth contrasting this approach with the “purely local” approach adopted

for “anonymous networks” in [14] (and outlined in Appendix B). In anonymous

networks, the authority of incoming threads is not known. The semantics of [14]

uses a weaker typing system requiring consistency only of local resource types.

Thus, in that work, (6) is taken to be well-typed, with subject reduction failing

only in the move from (7) to (8). The chief advantage of the current work is that it

permits the use of trust, which appears to be incompatible with terms such as (6).

4 Filters and Authorities

In this section we propose a semantics which recovers subject reduction for

partially-typed networks. The solution assumes that the origin, or authority, of

incoming agents can be reliably determined.

4.1 Syntax and Semantics

To accomplish dynamic typechecking, it is necessary to add type information to

running networks. We do this by adding a filter khh∆ii for each location k in a

network. The filter includes a type environment ∆ which gives k’s view of the

resources in the network. Suppose that in a network N, location k knows that there

is resource named a of type A at location `



Trust and Partial Typing in Open Systems of Mobile Agents 17

Table 5 Typing and reduction using filters

Static typing: all rules from Table 4

(net-�lter
g

)

Γ <

: ∆
Γ(k) = ∆(k)

Γ ` khh∆ii
(net-�lter

b

)

Γ(k) = lbad

Γ ` khh∆ii

Reduction precongruence: (r-split), (r-eq
1

) and (r-eq
2

) rules for � from Table 2

(r

f

-move) kJgoto`:PK j `hh∆ii
7�! `JPK j `hh∆ii

if k = ` or ∆ k
`

P

(r

f

-newr) kJ(νa:A)PK j khh∆ii
7�! (νka:A)

�

kJPK j khh∆ufka:Agii
�

if a =2 fn(∆)

(r

f

-newl) kJ(ν`:L)PK j khh∆ii
7�! (νk`:L)

�

kJPK j khh∆uf`:Lgii j `hhf`:Lgii
�

if ` =2 fn(∆)[fkg

(r

f

-comm) kJa!hviPK j kJa?(X:T)QK j khh∆ii
7�! kJPK j kJQfjv=XjgK j khh∆ufkv:Tgii

Dynamic typing: all rules from Table 4, with ‘



Trust and Partial Typing in Open Systems of Mobile Agents 18

Here ∆ 

k
`

P is a dynamic typing relation, which intuitively says that P is well-

formed to move to location `, if acting under authority of k. Agents originating

locally are assumed to be well-typed and therefore need not be checked dynami-

cally.

Dynamic Typing. One approach to dynamic typing would be to take the dynamic

typing relation to be the same as the static typing relation: (

k
w) = (`w). In effect,

this would limit incoming agents to include only names of resources that are known

in advance. While this is certainly sound, it is much too restrictive; for example,

new resources could only be used by agents that originated locally. Consider the

system:

kJ(νa)goto`:b!hk[a]iK j `Jb?(z[x])PK j `hh∆ii (*)

Here k creates a new resource and wishes to communicate it to `. However with

(

k
w) = (`w) the move from k to ` is refused — (r

f

-move) cannot be applied —

since the filter ∆ at ` can have no knowledge of the new resource a.

At the opposite extreme, we might allow threads to include any reference to

non-local resources. However, this approach is clearly unsound from the counter-

example given in the last section. The difficulty is that threads from bad locations

may provide incorrect information about good locations, breaking subject reduc-

tion.

To straddle the gap between sound-but-useless and unsound-but-expressive, we

introduce the notion of authority. We say that an agent leaving a location k acts

under the authority of k. When an agent with authority k enters another location,

we say that k is the authority of the agent.

While it is not safe to allow incoming agents to refer to any non-local resources,

it is safe to allow them to refer to resources located at their authority, i.e. at their

“home” location. Intuitively this is true because, under this discipline, “bad” agents

can only to “lie” about resources located at their authority, which must have been

a bad location to begin with. Lies about bad locations don’t hurt well-typing, since

bad locations are untyped.

Formally, the rules for runtime typing extend those of the static type system

given in Tables 3 and 4 with two additional rules for values and one for threads.

These rules allow references to an incoming agent’s authority to go unchecked.

The rule (val

f

-self
1

) allows an incoming agent to refer to its authority k, regardless

of whether the filter environment ∆ contains any information about k. (Note that

the condition lbad <

: K is vacuously satisfied; we include it here only for reference

in the next section.) The rule (val

f

-self
2

) allows an incoming agent to refer to

resources at its authority. As an example, let ∆
`

= f`:locfa:reshK[B]igg. Although

we cannot infer that ∆
`

`

`

a!h(



Trust and Partial Typing in Open Systems of Mobile Agents 19

The rule (thread

f

-return) allows a thread to return to its home location without

subjecting the returning thread to further typechecking. This rule allows some

additional expressiveness and reduces the burdens of typechecking somewhat.

Note that while the static typing system interprets the rules of Tables 3 and

4 with respect to an omniscient authority (Γ



Trust and Partial Typing in Open Systems of Mobile Agents 20

∆(`) = Γ(`), and therefore ∆(`) must have the entry b : reshloc[reshbooli]i; there-

fore to type the term we must be able to deduce ∆mk a:reshbooli. Next note that

∆ must be consistent with reality, namely Γ. This means that if ∆ has knowledge

of the resource a at k then it must be at the conflicting type reshinti; therefore the

rules of Table 3 cannot be used to infer ∆mk a:reshbooli. Finally, since k is not the

authority of the thread, neither can the additional rules of Table 5 be used to justify

the claim that ∆mk a:reshbooli. It follows that the inference ∆m
`

b!hk[a]i is impos-

sible. �

EXAMPLE 4.4. Let us now modify the previous example so that m attempts to

relate information about its own resources, rather than those of k. In such cases,

movement always succeeds, whether or not the source site is bad. For example, we

have the reduction:

mJgoto`:b!hm[a]iK j `hh∆ii �! `Jb!hm[a]iK j `hh∆ii

This follows since ∆m
`

m[a]:loc[reshbooli] can be inferred using (val

f

-self
1

) and

(val

f

-self
2

)



Trust and Partial Typing in Open Systems of Mobile Agents 21

since ∆0



m
`

c!hk[a]i : In the absence of other agents, the migrations can only be

executed in one order (k first). �

EXAMPLE 4.7. As a filter is updated, contradictory evidence may be obtained

about a site, in which case the site must be untyped and can safely be deemed to be

bad. As an example let Γ and the filter ∆ = f`:Γ(`)g be as before, and consider the

network:

mJgoto`:b!hm[d]ic!hm[d]iK j `Jb?(z[x])c?(w[y])PK j `hh∆ii

After the migration from m to ` and one communication this reduces to

`Jc!hm[d]iK j `Jc?(w[y])P0

K j `hh∆0

ii

where ∆0

= ∆ufm:locfd:reshbooligg. After the second communication, the net-

work reduces to

`J



Trust and Partial Typing in Open Systems of Mobile Agents 22

Table 6 Runtime Error

`Ja?(X:T)PK j `hh∆ii err `
��! if ∆(`) 6<

:

locfa:reshTig

`Ja!hviPK j `hh∆ii err `
��! if ∆(`) 6<

:

locfa:reshTig; all T

`Ja!hviPK j `hh∆ii err `
��! if ∆(`) <

:

locfa



Trust and Partial Typing in Open Systems of Mobile Agents 23

a. Thus we may have trusted locations with certain resources for handling trusted

data and others for handling untrusted data. In a similar vein we may have un-

trusted locations containing resources that communicate trusted data. As we shall

see, these resources at untrusted locations cannot be used to increase the level of

trust in a network.

The extension of the subtyping relation to these new types is based on two

ideas:

� Every trusted location is also a location.

� Every trusted location guarantees good behavior; therefore, a “bad” or un-

typed location can never be trusted by a good site. This means that the type

lbad is no longer the minimal location type in the subtyping preorder.

The subtyping relation is therefore built up using the ordering:

lbad ltrustfeu:eA;v:Bg

locfeu:eA;v:Bg ltrustfeu:eAg

locfeu:eAg

??⑧⑧⑧⑧⑧⑧

__❄ ❄ ❄ ❄ ❄ ❄

??⑧⑧⑧⑧⑧⑧

??⑧⑧⑧⑧⑧⑧

__❄ ❄ ❄ ❄ ❄ ❄

The formal definition is given in Appendix A.

PROPOSITION 5.1. The set of types, extended with lbad and ltrust, under the sub-

typing preorder, has a partial meet operator.

Proof. See Appendix A. �

With the addition of ltrust, the filters in a network may contain more detailed

information about remote sites. Consider a network N which contains a filter `hh∆ii.
As before, if k is not mentioned in ∆, this means that ` has no knowledge of k. But

now there are now three possibilities with respect to a remote location k mentioned

in `hh∆ii:

� ∆(k) <: lbad, which means that ` has accumulated sufficient contradictory

information about k to conclude that k is untyped.

� ∆(k) <: ltrust, which means that ` trusts k. Note that this notion of trust is

asymmetric; ` may trust k without k trusting `. Also note that in well-typed

systems, the rule (net-�lter) in Table 5 ensures that k, trusted by `, cannot

be an untyped location unless ` itself is untyped; this is enforced by the

requirement that Γ(k) <: ∆(k), since lbad 6<

:

ltrust.

� ∆(k) <: loc, which means that ` knows of k, but cannot determine whether or

not k is well-typed.



Trust and Partial Typing in Open Systems of Mobile Agents 24

As we have seen in the previous section, the information in a filter may increase

as the network evolves, i.e. `hh∆ii may evolve to `hh∆0

ii, where ∆0

<

: ∆. But the

subtyping relation between types ensures that once a location k is deemed “bad” in

`hh∆ii it will remain so forever, and similarly with sites that are deemed “trusted”.

It is only the third category which may change. In Example 4.7 we have seen that

new information may result in ∆(k) changing from loc to lbad. We shall soon see

that new information can also “improve” the status of k from loc to ltrust.

With the addition of trust, we can revise the reduction relation of the previous

section to eliminate dynamic typechecking of agents arriving from trusted sites.

We adopt the semantics of Table 5, replacing (r

f

-move) with:

(r

t

-move) kJgoto`:PK j `hh∆ii 7�! `JPK j `hh∆ii if ∆(`) <

:

ltrust or ∆ k
`

P

Note that the presence of ltrust changes the importance of the condition lbad <

: K

in the dynamic typing rule (val

f

-self
1

). Whereas this condition was tautological in

Section 4, here it is not. The side condition precludes the use of (val
f

-self
1

) to infer

∆k
`

k:ltrust. This is important, as it prevents bad sites from becoming trusted.

EXAMPLE 5.2. Let ∆ = f`:locfd:reshltrustig;k:ltrustg and consider the network:

`hh∆ii j `Jd?(z)PK j kJgoto`:d!hmiK j mJgoto`:d!hniK

Here the locations m and n are unknown to `, i.e. ∆(m) and ∆(n) are undefined. In

addition, d is a resource at ` for communicating trusted locations. The migration

from m to ` is not immediately allowed since ∆



Trust and Partial Typing in Open Systems of Mobile Agents 25

EXAMPLE 5.3. Consider the network

mJgoto`0:goto`1:goto`2:PK j `ihh∆iii





Trust and Partial Typing in Open Systems of Mobile Agents 27

rule (r-comm), from the standard semantics. Another possibility would be to add

analysis to the filter operation. Then the move rule would become:

kJgoto`:PK j `hh∆ii 7�! `JPK j `hh∆u∆0

ii if ∆ k
`

P :∆0

The idea is that while checking an incoming term, the filter could also note any new

names that are received with authority. Another possibility is to abandon non-local

filter updates altogether; in this case, to allow a reasonable amount of expressive-

ness while preserving type safety, one would have to add further constructs to the

language, as outlined at the end of the next subsection.

6.3 Progress

While subject reduction is important, it is purely a safety property; it does not

imply that any reductions are ever performed. The semantics of Section 5 enjoys

the property that whenever an agent attempts to move from a site k to a location

that trusts k, the movement is always successful. This liveness property relies on

the fact that the target trusts k, however. It works because agents from trusted sites

come in with “universal authority”, i.e. the authority to say whatever they like.

A stronger property, which we call progress, is that whenever a well-typed

agent attempts to move between two good locations, the movement is successful.

Suppose we add the following clause to the definition of runtime error in Table 6:

kJgoto`:PK j `hh∆ii errfk;`g
�����! if kJgoto`:PK j `hh∆ii �X�!

We then say that the typing system guarantees progress if

Γ ` N and Γ(`) 6<

:

lbad, Γ(k) 6<: lbad implies :(N errfk;`g
�����!)

Note that this property is not dependent on the trust relation between sites. Un-

fortunately, this progress property does not hold for our semantics, as can be seen

from the following example. Let Γ, ∆ and N be defined as follows:

Γ =

8

<

:

k : ltrustfa : reshintig

` : ltrustfc : reshloc[reshinti]ig

m : ltrust

9

=

;

∆ =

�

` : ltrustfb : reshloc[reshbooli]ig
	

N = mJgoto`:c!hk[a]iK j `hh∆ii

Then Γ ` N, but N �X�!. The problem here is that, although the agent at m is well-

typed, the reference to a is made without authority.

In practice, progress may not be that important, depending upon the application

and the underlying implementation. In the example above where the move from m

to ` is unsuccessful, an implementation of the filter at ` might report to m the

reasons for the failure. It would then be up to m to resend the agent (or some piece

of it) via k.



Trust and Partial Typing in Open Systems of Mobile Agents 28

On the other hand, one way to guarantee progress would be to allow an incom-

ing agent to refer only to local values or values at its authority. It is straightforward

to design a static type system to enforce this constraint.4 However such an approach

is very restrictive without some addition to the language. One possibility would be

to introduce the notion of signed values (possibly based on [1]) which would allow

certain values in an agent to be received (and typed) under a different authority

than that of the agent itself. Even without full progress, signatures could be useful.

In the example sketched above, after m’s agent is refused entry to `, m might itself

resend the agent, rather than forwarding it to k, this time carrying a signed value to

prove that k[a] is of the appropriate type.

6.4 Anonymous Networks

In [14] we presented a semantics for open system in which the authority of in-

coming agents is not known. We call such systems anonymous networks. In

Appendix B we recast the semantics of [14] using filters and lbad. An attractive

property of the semantics is that filter updating is purely local, i.e. no non-local data

need be stored in filters. However because the origin of incoming agents cannot be

determined it is not possible to incorporate notions of trust into this semantics,

which implies that incoming agents must always be typechecked. In addition, it is

very easy for good sites to develop misconceptions about other good sites, frustrat-

ing progress.

6.5 Plugins

One quickly discovers a limitation of Dπ when trying to model mirroring of names

across a network. The idea is to create a new resource, say a class name, at one



Trust and Partial Typing in Open Systems of Mobile Agents 29

static, the second dynamic:

Γ `u v:A

Γufw:locfu:v :Agg `w P

Γ `w (loadu:v :classA)P ∆ kw k:a:classA

We believe that using indexed names for mirrorable values will be crucial to es-

tablish Subject Reduction for such a language under partial typing. Note that such

a naming strategy has been adopted by the Java community, although perhaps for

different reasons, where class names are of the form com.ibm.aglet.

7 Conclusions

We introduced the notion of partial typing, which captures the intuition that “bad”

sites in a network may harbor malicious agents while “good” sites may not. We

demonstrated that in the presence of partial typing, some form of dynamic type-

checking is required to ensure that good sites remain uncorrupted. We presented

a semantics for Dπ incorporating such dynamic typechecking, showing that it pre-

vented type violations at good sites, and discussed the extent to which it guaranteed

progress. Finally, we added webs of trust to the language, reducing the need for

dynamic typechecking while retaining type safety at good sites.

The presentation of Dπ given here differs somewhat from that of [13]; for ex-

ample, we have added base types and moved some of the semantic rules from the

structural equivalence to the reduction relation. Most of the changes are stylistic

rather than substantive. Two of the changes, however, are essential for the treat-

ment of partial typing. First, we have moved the rule (r-new) from the structural

equivalence to the reduction relation; this is necessary to allow filter updating. Sec-

ond, we have split the space of names in two, syntactically distinguishing locations

from resources; this is necessary to prevent the filter updating rules from producing

nonsense environments such as f`:locf`:reshigg.

Several other distributed variants of the π-calculus have been defined, and it

is informative to see how partial typing might be added to these languages. Syn-

tactically, Dπ is most similar to the language of Amadio and Prasad [4, 5], which

also uses a “goto” operator for thread movement, written “spawn(`;P)”. However,

in Amadio and Prasad’s language, the set of resources available to a thread does

not vary as the thread moves about the network. This means that an agent at `

can access resources at a different location k without requiring thread movement.

While this makes the language very expressive, it also frustrates the use of filters to

typecheck incoming threads. To add partial typing to such a language, one would

need to typecheck messages dynamically, rather than threads, violating the third

principle given in the introduction. In addition, the fact that names are assigned

unique locations in [5] appears to be incompatible with partial typing, as outlined

at the end of Section 4.1.



Trust and Partial Typing in Open Systems of Mobile Agents 30

The join calculus of Fournet, Gonthier, Levy, Marganget and Remy [11] shares

many of these properties. Whereas Amadio’s language adds thread movement to

message movement, however, the join calculus adds location movement. Unfortu-



Trust and Partial Typing in Open Systems of Mobile Agents 31

A Proofs

The Subject Reduction and Type Safety results for Section 4 are special cases of

those of Section 5, in which no trusted types appear. We present only the more

general results. First we establish Proposition 5.1.

The formal definition of subtyping with lbad and ltrust is:

ltrustfeu:eS;ev:eTg <

:

locfeu:eSg

lbad <

:

locfeu:eSg

ltrustfeu:eS;ev:eTg <

:

ltrustfeu:eSg

locfeu:eS;ev:eTg <

:

locfeu:eSg

lbad <

:

lbad

PROPOSITION (5.1). The set of types, extended with lbad and ltrust, under the

subtyping preorder, has a partial meet operator.

Proof. Ignoring resources, the meet operator can be defined as follows:

lbad loc ltrust

lbad lbad lbad undef

loc lbad loc ltrust

ltrust undef ltrust ltrust



Trust and Partial Typing in Open Systems of Mobile Agents 32

The first result is proved by induction on the definition of �, the second by induc-

tion on the definition of 7�!. The proofs of both results, and the accompanying

lemmas, can easily be derived from those found in [13]; in particular see Lemmas

4.7 and A.2, Proposition 4.5 and Theorem 5.1 of that paper. The only substantial

differences are in the rules (r

f

-comm) and (r

f

-move), which we discuss below.

For the most part, the proof for (r
f

-comm) follows that given in [13]. The only

additional complication is presence of filter updating. Suppose that Γ(k) 6= lbad,

Γ `k v:T and Γ <

: ∆. We must show that ∆0

= ∆ufkv:Tg is defined and that Γ <

: ∆0,

but this follows immediately from Lemma 2.3c and Lemma 2.3a.

Now let us turn to (r

f

-move). Suppose that Γ ` kJgoto`:PK j `hh∆ii and

kJgoto`:PK j `hh∆ii 7�! `JPK j `hh∆ii. To establish the result, it is sufficient to show



Trust and Partial Typing in Open Systems of Mobile Agents 33

� Suppose that `Jif u = v then P else QK

err `
��! because for every R either f

`

u:Rg

or f
`

v:Rg is undefined. By way of contradiction, suppose that Γ `

`

if u =

v then P else Q and therefore for some S, T we have:τηεν



Trust and Partial Typing in Open Systems of Mobile Agents 34

Note that the definition of static typing here is much weaker than that presented

in the body of the paper. For example the network (6) of Section 3.2 is well-typed,

although (8) is not. Using these definitions, one can establish Subject Reduction

and a weaker notion of Type Safety (given in [14]).

This formulation has certain advantages over that of [14], such as the stronger

language of partial types. Moreover it allows self moves to go untyped; i.e. reduc-

tions of the form `Jgoto`:PK 7�! `JPK are always allowed.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.

Technical Report 414, University of Cambridge Computer Laboratory, January 1997.

[2] Martı́n Abadi. Secrecy by typing in security protocols. Draft, 1997.

Available from http://www.research.digital.com/SRC/personal/Martin_

Abadi/home.html.

[3] Conference Record of the ACM Symposium on Principles of Programming Lan-

guages, San Diego, January 1998. ACM Press.

[4] R. Amadio and S. Prasad. Localities and failures. In Proc. 14th Foundations of Soft-

ware Technology and Theoretical Computer Science, volume 880 of Lecture Notes in

Computer Science. Springer-Verlag, 1994.

[5] Roberto Amadio. An asynchronous model of locality, failure, and process mobility. In

COORDINATION ’97, volume 1282 of Lecture Notes in Computer Science. Springer-

Verlag, 1997.

[6] L. Cardelli and A. D. Gordon. Mobile ambients, 1997. Draft, Available from http:

//www.cl.cam.ac.uk/users/adg/.

[7] Luca Cardelli. A language with distributed scope.




