
A theory of bisimulation for a fragment of concurrent ML

with local names

Alan Jeffrey

CTI, DePaul University

243 South Wabash Ave

Chicago IL 60604, USA

ajeffrey@cs.depaul.edu

Julian Rathke∗

COGS, University of Sussex

Brighton BN1 9QH, UK

to demonstrating that bisimilarity forms a congruence. The authors made initial steps towards the current

labelled transition semantics for local names in [15]. We proposed there a novel transition system which

incorporated a notion of privacy as a means of studying locality in the small sequential language ν-

Γ;∆,n : σ ` n : σ
Γ;∆ ` e : σ1 Γ,x : σ1;∆ ` t : σ2

Γ;∆ ` letx= e in t : σ2

Γ;∆ ` v1 : σ thread Γ;∆ ` v2 : σ thread

Γ;∆ ` v1 = v2 : bool

Γ;∆ ` v1 : σchan Γ;∆ ` v2 : σchan

Γ;∆ ` v1 = v2 : bool

Γ;∆ ` v1 : B Γ;∆ ` v2 : B

Γ;∆ ` v1 = v2 : bool

Γ;∆ ` v : bool Γ;∆ ` t1 : σ Γ;∆ ` t2 : σ
Γ;∆ ` if v then t1 else t2 : σ

Γ;∆ ` v : unit

Γ;∆ ` chanv : σchan

Γ;∆ ` v : σchan∗σ
Γ;∆ ` sendv : unit

Γ;∆ ` v : σchan

Γ;∆ ` recvv : σ

Γ;∆ ` v : σ thread

Γ;∆ ` joinv : σ
Γ;∆ ` v : unit→σ

Γ;∆ ` spawnv : σ thread

Figure 1: Thread type inference rules (not showing the usual simply typed λ-calculus rules)

;∆,n : σ thread ` t : σ
∆,n : σ thread ` n[t] ∆ ` 0

∆ `C1 ∆ `C2

∆ `C1 ‖C2

∆,n : σ `C

∆ ` νn : σ .C

Figure 2: Configuration type inference rules

including at least the unit type unit and the boolean type bool. The grammar of types is given:

σ ::= B | σ∗σ | σ→σ | σchan | σ thread

Since we are using a call-by-value reduction semantics, we need a grammar for values. We assume an

infinite set of variables x and names n, and some base values b including at least (), true and false. The

grammar of µνCML values is given:

v ::= b | (v,v) | λx : σ . t | n | x

Threads take the form letx1 = e1 in · · · letxn = en inv and consist of a stack of expressions e1, . . . ,en to be

evaluated, followed by a return value v. The grammar of µνCML threads is given:

t ::= v | letx= e in t

An expression consists of the usual simply-typed λ-calculus with booleans, together with primitives for

multi-threaded computation:

• chan () creates a new channel identifier.

• send (c,v) sends value v along channel c to a matching expression recvc, which returns v.

4

0‖C ≡ C

(C1 ‖C2)‖C3 ≡ C1 ‖ (C2 ‖C3)

C1 ‖C2 ≡ C2 ‖C1

C1 ‖νn .C2 ≡ νn . (C1 ‖C2) (n 6∈C1)

νn . νn′ .C ≡ νn′ . νn .C

Figure 3: Axioms for structural congruence C ≡C′

• spawnv creates a new named thread, which executes v(), and returns the thread identifier.

• join i blocks waiting for the thread with identifier i to terminate with value v, which is then returned

(this is similar to Reppy’s [23] joinVal function).

The grammar of µνCML expressions is given:

e ::= t | fstv | sndv | vv | if v then t else t | v= v |
sendv | recvv | chanv | joinv | spawnv

The use of values rather than expressions in many of the above terms may appear to be rather restrictive

however, in light of the fact that we are using call-by-value reduction we can use simple syntactic sugar

to recover many terms such as

fste≡ letx= e in fstx.

We will also make use of a sequential composition operator defined by

e;e′ ≡ letx= e ine′

where x does not occur free in e′.

The type inference rules for threads are given in Figure 1. The type judgements are of the form:

Γ;∆ ` t : σ

where Γ is the type context for free variables and ∆ the type context for free names.

In order to present the reduction semantics for µνCML it will be useful to describe the configurations

of evaluation. The basic unit of a configuration is a named thread. These can be combined using ‖ to

express concurrency and the configuration 0 represents the empty configuration and forms a unit for ‖.
We use the scoping operator νn : σ . [·] to delimit the portion of the configuration in which the identifier

n is deemed to exist. The grammar for configurations is as follows:

C ::= 0 |C ‖C | νn : σ .C | n[t]

Let the thread names of a configuration be defined:

tn(0) = /0 tn(C1 ‖C2) = tn(C1)∪ tn(C2)

tn(n[t]) = {n} tn(νn .C) = tn(C)\{n}

We will only consider configurations in which threads are named uniquely, that is:

5

3 Operational semantics and bisimulation equivalence

3.1 Labelled transition semantics

We make our first steps towards characterizing barbed equivalence using a labelled transition system

semantics. We adopt the approach we advocated in [15] by designing a semantics such that:

• Bisimulation can be defined in the standard way, following Gordon [10] and Bernstein’s [1] ap-

proach to bisimulation for higher-order languages. This contrasts with the higher-order bisimula-

tion used by Thomsen [30] and Ferreira, Hennessy and Jeffrey [6] in which a non-standard notion

of bisimulation is proposed whereby processes which emit other processes are compared such that

the emitted values must be related independently of the residual processes. Sangiorgi [26] showed

this approach to be inadequate for higher-order statically scoped languages with name generation.

• Labels are contextual in the sense that each labelled transition represents a small program fragment

which induces an appropriate reduction. This notion of contextual label has been investigated in

depth by Sewell [28] and Leifer and Milner [16].

Our labelled transition system is defined as a relation between well-typed configurations. The rules are

presented in Figure 5 but we elide type information for thread identifiers. In addition to these transitions

with labels ranged over by γ, the labelled transition system relation also contains the reduction relation

→ of the previous section, suitably labelled with β and τ: that is (∆ `C)
β✲ (∆ `C′) holds whenever

C
β✲ C′ holds (and similarly for τ).

Let α range over γ, τ and β transitions. We define (∆`C) =
α
⇒ (∆′ `C′) as (∆`C)⇒

α✲ ⇒ (∆′ `C′)

and (∆`C) =
α̂
⇒ (∆′ `C′) as (∆ `C)⇒ (∆′ `C′) when α is β or τ and (∆ `C) =

α
⇒ (∆′ `C′) otherwise.

The labels used take various forms, many are prepended with an identifier, for example,
n.b✲ . This

signifies which named thread we are currently investigating. Some are followed by another identifier,

for example,
n.fst.n′✲ indicates that we can observe that thread n has converged to a pair of values and we

may take the first component of this pair and test with it in a new thread named n ′. Because the only way

in which an observer may interact with thread n is by means of a non-destructive join synchronisation

we notice that the thread under examination will be unaffected by the test thus allowing subsequent

tests upon this pair of values to be performed. This obviates the need for explicit copying transitions

to allow repeated testing, cf. [15]. The transitions for modelling the communication primitives are not

addressed using a thread identifier because the origin of a communication is not an observable property

in this language. Similarly, the transition labelled join simply allocates a value to the named thread,

irrespective of any term under investigation. It should be clear that such transitions are necessary in

order to distinguish, say,

n[letx= joinn′ in true] 6≈ n[letx= joinn′ in false]

However, it is not observable in this language whether a thread is currently waiting on another to termi-

nate. This bears similarity to the situation of the asynchronous π-calculus [2, 12] and the transitions we

use are akin to those for input receptivity [12]. It is observable whether a particular thread has terminated

though and we use the transitions labelled n ⇓ to allow this. The use of the free name context allows us

to model the static scoping discipline present in CML. The intention is that the names in ∆ are global and

8

(∆ ` n[v

It is not too hard to see that the reductions we identified as being β-reductions are in fact conflu-

ent. They are not only confluent with respect to other reductions, but in fact with respect to labelled

transitions:

Proposition 3.3 The follow diagram can be completed:

(∆ `C)
β✲ (∆ `C′)

(∆′ `C′′)

α
❄

as

(∆ `C)
β✲ (∆ `C′)

(∆′ `C′′)

α
❄ β✲ (∆′ `C′′′)

α
❄

or C′ ≡C′′ if α is β.

Proof: Firstly we can easily establish that all β-reductions are, up to structural equivalence, of the form

ν∆0 . (C1 ‖C2)
β✲ ν∆0 . (C′1 ‖C2)

where C1
β✲ C′1 is an instance of a β-reduction axiom.

Now, suppose (wlog) that (∆ ` ν∆0 . (C1‖C2))
α✲ (∆′ `C′′) also and C′ is ν∆0 . (C′1‖C2). Given this,

it is then easy to see by inspecting the reduction and transition axioms that, for α 6= β, save for the case

in which the join synchronisation β-reduction occurs, it must be that (∆ ` ν∆0 .C2)
α✲ (∆′ ` ν∆′0 .C′2)

for appropriate ∆′0. So C′′ must be of the form ν∆′0 . (C1 ‖C
′
2) and if we let C′′′ be ν∆′0 . (C′1 ‖C

′
2) we are

done.

If, however, the β-reduction actually arises as an instance of the join axiom:

ν∆0 . (n1[letx= joinn2 in t]‖n2[v]‖C2)
β✲ ν∆0 . (n1[letx= v in t]‖n2[v]‖C2)

then we notice that α may be derived not only from C2 but also from n2[v]. In this situation we also see

that all observations, α, deriving from this value have the general form

∆ ` ν∆0 . (n1[letx= joinn2 in t]‖n2[v]‖C2)
α✲ ∆′ ` ν∆′0 . (n1[letx= joinn2 in t]‖n2[v]‖C

′
2)

thus n2[v] is again residual in the target term and the α transition cannot preclude the β-reduction.

It only to remains to investigate the case in which the α transition is actually a β-reduction. Clearly,

this could be exactly the same β-reduction in C1 (then C′ ≡C′′), or it be a different reduction originating

entirely in C2, in which case the two clearly commute. Alternatively, it could be an overlapping instance

of the join axiom

ν∆0 . (n1[letx= joinn2 in t]‖n2[v]‖n3[letx= joinn2 in t ′]‖C2)
β✲ ν∆0 . (n1[letx= joinn2 in t]‖n2[v]‖n3[letx= v in t′]‖C2)

Again, we notice that the n2[v] is residual in the target term and this allows the two β-reductions to

commute. ✷

10

• Suppose C is n[λx . t] and γ is n .@v.n′ so that ∆′ is n′ : σ′ thread (where ∆ ` n : σ→σ′ thread) and

C′ is C ‖n′[letx= v in t]. We know that C∆
γ is νn′ . m[n′]‖ l[joinn; true]‖n′[joinnv] and that

νn′ . m[n′]‖ l[joinn; true]‖n′[joinnv]‖n[λx . t]

reduces through join synchronisations to

νn′

Part (ii) We proceed by case analysis on γ. The reasoning is much the same in each of the cases so we

demonstrate only two.

• If γ = n . νn′ (with ∆′ = n′) then, by hypothesis,

m[joinn]‖ l[joinn 6∈ ∆]‖C⇒ l[true]‖C′′

so we know by analysing the reduction rules, along with the fact that f n(C) ⊆ ∆, that, for some

C′:

C′′
β
→∗ νn′ . (m[n′]‖n[n′]‖C′).

and so

(∆ `C)⇒ (∆ ` νn′ . n[n′]‖C′)
n.νn′✲ (∆,n′ ` n[n′]‖C′)

as required.

• If γ = n . @v. n′ (with ∆′ = n′) then, by hypothesis,

νn′ . m[n′]‖ l[joinn; true]‖n′[joinnv]‖C⇒ l[true]‖C′′

then it must be the case, for some ∆′′,C′′′,C′′′′, that

C⇒ ν∆′′ . (n[λx . t]‖C′′′) ν∆′′ . (n′[joinnv]‖n[λx . t]‖C′′′)⇒C′′′′ νn′ . (m[n′]‖C′′′′)≡C′′

So, since ∆ ` v,

(∆ `C) ⇒ (∆ ` ν∆′′ . (n[λx . t]‖C′′′))
n.@v.n′✲ (∆,n′ ` ν∆′′ . (n[λx . t]‖n′[letx= v in t]‖C′′′))

β
←∗ (∆,n′ ` ν∆′′ . (n[λx . t]‖n′[joinnv]‖C′′′))

⇒ (∆,n′ `C′′′′)

By confluence (Proposition 3.3), we can find C′ such that

(ν∆′′ . (n[λx . t]‖n′[letx= v in t]‖C′′′))⇒C′
β
←∗ C′′′′.

Therefore

(∆ `C) ===
n.@v.n′

⇒ (∆,n′ `C′) C′′
β
→∗ νn′ . (m[n′]‖C′)

as required. ✷

A bisimulation

Lemma 3.7 (Garbage collection) If ∆,n � n[v]‖C1 ≈
pb n[v]‖C2 and n 6∈C1,C2 then ∆ � C1 ≈

pb C2.

Proof: Straightforward. ✷

Lemma 3.8 (Extrusion) If

∆,m � ν∆′ . (m[∆′]‖C1)≈
pb ν∆′ . (m[∆′]‖C2)

and m 6∈C1,C2 then ∆,∆′ � C1 ≈
pb C2.

Proof: We prove this by coinduction. Let R be defined such that ∆,∆′ � C1 R C2 if and only if

∆,m � ν∆′ . (m[∆′]‖C1)≈
pb ν∆′ . (m[∆′]‖C2)

where m 6∈ ∆′. We need to demonstrate that R is barbed, and reduction closed and moreover that it is ‖-
contextual. Because ≈pb is the largest such relation, we would then know that R ⊆≈pb, thus achieving

our result.

• Reduction closure for R is immediate from the definition.

• To show that R is barbed closed we suppose C1 ⇓n for some n. If n is defined in ∆ then by

assumption we find C2 ⇓n. The more difficult possibility is that n is defined in ∆′. In this case we

use parallel contextuality of ≈pb to help. Choose a fresh n′ and define C to be

n′[letx=πn(joinm) in joinx]

where πn refers to projected component of ∆′ at which n occurs. This configuration fetches the

private names exported at m and uses the particular.15(the52 Tfm iT)Tj14 11.950ality of≈pbDm C ⇒
0 n)

Note that

m[∆′]‖C′ β
→∗ m[∆′]‖C.

4 Congruence properties of bisimilarity

We are left with the task of showing that bisimilarity is a congruence. This is a notoriously difficult

problem, and proof techniques which work in the presence of both higher-order features and dynamically

generated names are limited [21, 22].

A viable approach to tackling this problem in languages with sufficient power is to represent higher-

order computation by first-order means. Indeed, Sangiorgi demonstrates in his thesis [26] that higher-

order π-calculus can be encoded, fully abstractly, in the first-order π-calculus by means of reference

passing—this transformation is described in two stages, the first of which is known as a trigger encod-

ing and recasts higher-order π-calculus in a sublanguage of itself in which only canonical higher-order

values, or triggers, are passed.

We adopt a similar approach here but, owing to the functional nature of the language, our encoding is

more complicated than that of the higher-order π-calculus. This is simply because processes in languages

such as π-calculus do not compute and return values in the way that functions do. Thus, if one were to

encode the evaluation of a function in some context by actually evaluating the function out of context,

then the resulting value would eventually need to be replaced in that context. This situation does not

arise in the π-calculus. The thrust of the current work is to demonstrate a novel approach to proving

a fully abstract trigger encoding which can be used to prove congruence of bisimilarity in higher-order

languages.

Rather than compositionally translating our higher-order language into a simpler language, we de-

scribe an alternative operational semantics which implements this trigger passing. The intention is that

there is a direct proof of congruence of bisimilarity on this alternative operational semantics, and cor-

rectness between the two semantics yields congruence on the original. Correctness between the two

semantics can be stated quite tightly as:

[[C]]ω ≈ [[C]]0

where [[C]]ω is understood to be the interpretation of C using the original semantics and [[C]]0 the triggered

semantics.

In fact, to relieve the difficulty of proving correctness we aim to use an induction on the order of the

type of C. This leads us to defining a hierarchy of semantics, indexed by type order. In [[C]]n, terms of

type lower than n are passed directly, and terms of higher type are trigger-encoded. We can then regard

[[C]]ω as the ‘limit’ of the semantics [[C]]0, [[C]]1, . . . Our proof that bisimilarity is a congruence is then

broken into three parts:

1. Prove that bisimilarity is a congruence for [[·]]0.

2. Prove that if [[C]]0 ≈ [[C′]]i for all i then [[C]]0 ≈ [[C′]]ω.

3. Prove for all i that [[C]]i ≈ [[C]]i+1.

From these three properties, it is easy to prove that bisimulation is a congruence for [[·]]ω, which is, by

definition, exactly our original semantics for µνCML.

Note that this proof relies on a well-founded order on types, and so will not work in the presence

of general recursive types. This is not as limiting as might first be thought, since σchan and σ thread

are considered to be order 0 no matter the order of σ, and so we can deal with any recursive type as

17

long as the recursive type variable is beneath a ·chan or · thread. This is a similar situation as for most

imperative languages, which restrict recursive types to those including pointers. Also note that this

restriction is weak enough to include all of the π-calculus sorts, such as the type µX . X chan which

describes monomorphic π-calculus channels.

We will now present the triggered semantics and show the three required properties.

4.1 Trigger Semantics for µνCML

In order to describe these semantics concisely it will be helpful to introduce a mild language extension.

There is no explicit recursive function definitions in the core language we presented above as such terms

can be programmed using the thread synchronization primitives (cf. coding the Y-combinator using

general references). We introduce a replicated reception primitive, which can indeed be coded using

recursive functions, or more directly, with join synchronization. Let us write ∗recvn to represent this

new expression. There is an associated reduction rule for this new expression which behaves as a recv

expression but spawns a new thread of evaluation. This is defined as

n1[letx1 = send (n,v) in t1]‖n2[letx2 =∗recvn int2]
τ✲

νn3 .

(

n1[letx1 =() in t1]‖n2[letx2 = v in t2]‖
n3[letx2 =∗recvn in t2]

)

Of course, there is an obvious corresponding transition rule for replicated reception also:

(∆ ` n[letx=∗recvn′ in t])
recv(n′,v)✲ (∆ ` νn′′ . n[letx= v in t]‖n′′[letx=∗recvn int])

The following pieces of notation will be convenient. Let τa denote the term

λx . letr = chan() in send (a,(x,r)); recv r

The trigger call τa is used to substitute through terms in place of functions. When the trigger call is

applied to an argument, the trigger simply sends the argument off to the actual function (on channel a).

It must also wait for the resulting value given by the application on a freshly created private channel.

Complementary to this is the resource at a, written a⇐ f , where we use f to range over λ-abstractions.

This is defined to be a replicated receive command:

let(x1,x2)=∗recva in let z= f x1 insend (x2,z)

which can continually receive arguments to f , along with a reply channel. It then applies f to the

argument and sends the result back along the reply channel.

These are the two basic components of the triggered semantics. We use them to define a notion

of type-indexed substitution. Recall that the order of a type O(σ) is defined by induction such that

O(σ1) < O(σ1→σ2) ≥ O(σ2) and O(σ thread) = O(σchan) = 0 and the type-order of a closed term

O(t) is the order of the term’s type. Strictly speaking, this ought to be defined relative to the name

environment ∆ in which t

here. Let the level i substitution [v/x]i be defined by:

C[b/x]i = C[b/x]
C[n/x]i = C[n/x]
C[(v1,v2)/x]i = (C[(x1,x2)/x])[v1/x1]i[v2/x2]i

C[f /x]i =

{

C[f /x] if O(f)≤ i

νa,n . Td
([)Tj
/R14 11.9552e/x

The first of these observes that channels which have unique points of communication give confluent

reduction because no competition between resources occurs. This is used for the return part of the

trigger protocol. The latter is slightly more involved and relies upon a side-condition that the sending

participant cannot communicate with any party other than the replicated input. We have this property

when beginning each trigger protocol communication and the lemmas above show that we can maintain

it as an invariant throughout testing. There are a series of technical lemmas we must work through before

we can show correctness of the triggered semantics. The first of these serves to demonstrate that we can

remove, up to weak bisimulation, unwanted η-expansions introduced by the trigger protocol. Note that

because we may not assume congruence of bisimulation at this point we must state these lemmas in

context.

Lemma 4.3

(i) ∆ � [[ν∆′ .C ‖n[t]]]i ≈ [[ν∆′ .C ‖n[letx= t inx]]]i

(ii) ∆ � [[ν∆′ .C ‖n[letx1 = t1 in t2]]]i ≈ [[ν∆′ .C ‖n[letx2 = t1 in letx1 = x2 in t2]]]i

Proof: This is easy to prove using bisimulations. The only point to watch is the case in which t (or t1) is

itself a let expression. To accommodate this we must build the witness, for (i) say, as

∆ � ν∆′ .C ‖n[let~x=~t in t] R ν∆′ .C ‖n[let~x=~t in letx= t inx]

where let~x=~t in t refers to the nested sequence letx1 = t1 in letx2 = t2 in . . . letxn = tn in t. ✷

The next lemma is used to establish the correctness of the return end of the trigger protocol.

Lemma 4.4

∆ � [[ν∆′ .C ‖νn′r. (n[letx= recv r in t2]‖n′[letz= t1 insend (r,z)])]]i ≈ [[ν∆′ .C ‖n[letx= t1 in t2]]]i

Proof: We use the bisimulation up to (
β
→∗,≈) technique here. The witness must use a stack of evaluation

contexts in a similar manner to the previous lemma. Specifically we let R contain ≈ along with pairs of

configurations formed from

∆ ` ν∆′ .C ‖νn′r. (n[letx= recv r in t2]‖n′[let~x=~t in letz= t1 insend (r,z)])

and

∆ ` ν∆′ .C ‖n[let~x=~t in letx= t1 in t2]

and show that R has the relevant closure properties. This is more or less straightforward checking. The

only points of interest occur in the situation when the evaluation stack is empty and t1 is a value. In

this case the communication on r occurs. We note that, because r is private, this communication is an

instance of the first special β-reduction of Lemma 4.2 and hence can be used in the up to
β
→∗ technique.

Also, the residual of this communication will leave a terminated private thread at n ′ and a new name

declaration for r which is no longer used. We note that these can easily be garbage collected using weak

bisimulation. ✷

20

The next lemma is the heart of the correctness proof. This essentially states that, for substitutions

of functions of type order i the trigger protocol correctly implements the substitution. In order to see

this we show that the relation {C[v/x]i,C[v/x]i+1} is a bisimulation up to (
β
→∗,≈). The difficulty here is

seen in the case in which v is a function of order i+1, being applied to some argument in C. On the right

hand side we have a standard substitution and a standard β-reduction. Whereas on the left hand side we

see a triggered substitution, and, by virtue of the argument being of type < i+1, a standard β-reduction.

It is crucial that no nested trigger substitution is incurred here and we can use the power of the up to

technique to finish by appealing to the previous lemma.

Lemma 4.5 [[C[v/x]i]]i′ ≈ [[C[= x]i

is reached where B(τa) refers to the body of the abstraction defining the trigger call. Noting that

O(v) < i

being used, however all terms on the left are to be considered in the level i semantics whilst all terms on

the right in the level i+1.

(∆ `C) ✛ R ✲ (∆ `C)

(∆′ `C′[v/x]i)

β
❄

(∆′ `C′[v/x]i+1)

β
❄

■❅
❅

❅
R

❅
❅

❅❘

�
�

�✒

✠�
�

�

(∆′ `C′[v/x]i+1)

(Lemma 4.5)≈

❄

✻

(∆′ `C′[v/x]i)

≈ (Lemma 4.5)

❄

✻

For Part (ii) we construct a bisimulation:

R = {(∆ ` [[C1]]0,∆ ` [[C2]]ω) | ∃i .∀i′ > i . ∆ � [[C1]]0 ≈ [[C2]]i′}

We must show that this is actually a bisimulation. Suppose that ∆ � C1 R C2 and (∆ `C1)
α✲ (∆′ `C′1).

We know that there must exist some i0 such that for all j > i0 we have some

(∆ `C2) ==
α̂
⇒ (∆′ `C

′ j
2)

in the level j semantics with ∆′ � C′1 ≈ C
′ j
2 for terms between the level 0 and level j semantics. In

particular we can choose j to be greater than i0, the highest type order appearing in the type derivation

tree of C2 and the highest type order appearing in the type derivations of any values appearing in α. We

know that, by definition, any substitution performed in the transitions (∆ `C2) ==
α̂
⇒ (∆′ `C

′ j
2) are not

triggered. Therefore we also have (∆ `C2) =
α̂
⇒ (∆′ `C

′ j
2) in the level ω semantics. Moreover, we know

from part (i) that ∆′ � [[C′
j
2]] j ≈ [[C′

j
2]]i′ for any i′ > j. Hence, ∆′ � C′1 R C′

j
2 as required.

The transitions from ∆ `C2 can be matched similarly. ✷

Corollary 4.7 [[C]]0 ≈ [[C]]ω for all C.

4.2 Congruence

Proof: This can now be proved fairly directly using our bisimulation up to technique. The level 0 seman-

tics ensure that the only substitution which occurs is for base values, names and triggers. Bisimilarity

on these values is just syntactic identity so any problems with substitutivity (in the presence of static

scoping) which arise in [10, 15] are avoided. We omit details of this as they can be recovered from the

proof of Proposition 5.6. ✷

Given this we can draw upon the results of Corollary 4.7 and the above Proposition to obtain:

Theorem 4.9 Bisimilarity is a congruence.

5 A canonical labelled transition system

So far we have shown that bisimilarity coincides with barbed equivalence. The motivation for providing

such a characterisation lies in the need to alleviate the quantification over all contexts present in the def-

inition of barbed equivalence. We achieve this to an extent by reducing contexts to labelled transitions.

However, despite being a neater coinductive equivalence, the definition of bisimilarity now quantifies

5.1 Bisimilarity is a congruence for the canonical semantics

The proof that bisimilarity for the canonical, level 0, semantics is preserved by contexts is non-trivial,

and it will be helpful to present some technical lemmas to assist in its exposition. For the remainder of

this section, all configurations are to be understood using the canonical, level 0 semantics.

Lemma 5.2 (i) If ∆,n : σ � C1 ≈C2 then ∆ � νn : σ .C1 ≈ νn : σ .C2.

(ii) If ∆,n � C1 ≈C2 then ∆ � C1 ‖n[vc]≈C2 ‖n[vc].

(iii) If ∆,n : σ � C1 ‖n[v1]≈C2 ‖n[v2] and n 6∈C1,C2 then ∆ � C1 ≈C2.

(iv) If ∆,n � C1 ≈C2 and n′ 6∈ ∆ then ∆,n′ � C1[n
′/n]≈C2[n

′/n]

Proof: Straightforward coinductions. ✷

Lemma 5.3 For n of type σ thread and for fresh l of type unit thread we have:

(i) If ∆,n � ν∆1 .C1 ‖n[f1]≈ ν∆2 .C2 ‖n[f2] then

∆,n � ν∆1, l . (C1 ‖n[f1]‖ l[a⇐ f1])≈ ν∆2, l . (C2 ‖n[f2]‖ l[a⇐ f2])

for any abstractions f1, f2.

(ii) If ∆,n � ν∆1 . (C1 ‖n[t1])≈ ν∆2 . (C2 ‖n[t2]) and n 6∈ f n(C1), f n(C2) then

∆ � ν∆1, l . (C1 ‖ l[letx= t1 in send

• Suppose (i) holds: we show (iii).

To begin with we let

∆ � ν∆1, l . (C1 ‖ l[send(r,v1)]) R ν∆2, l . (C2 ‖ l[send(r,v2)])

hold exactly when ∆,n � ν∆1 . (C1 ‖ n[v1])≈ ν∆2 . (C2 ‖ n[v2]). We will show that R ∪ ≈ forms a

bisimulation relation:

Suppose that ∆ � C R C′ is witnessed by ∆ � C ≈ C′. The diagram required to demonstrate

bisimulation is trivially closed. Therefore we can assume that ∆ � C R C ′ is of the form:

∆ � ν∆1, l . (C1 ‖ l[send(r,v1)]) R ν∆2, l . (C2 ‖ l[send(r,v2)]),

witnessed by

∆,n � ν∆1 . (C1 ‖n[v1])≈ ν∆2 . (C2 ‖n[v2]).

Furthermore suppose that ∆ ` ν∆1, l .C1 ‖ l[send(r,v1)]
α✲ ∆′ ` D1 with n 6∈ α. We consider the

possible forms for this transition:

– Firstly, α may have originated in C1, that is, ∆′ is ∆,∆0 where the domain of ∆0 is the bound

names of α, and if we write ∆i as ∆′i,∆0 (for i = 1,2), then we have D1 is, up to structural

equivalence, of the form

ν∆′1, l . (C′1 ‖ l[send(r,v1)]).

In this case we also know that

∆,n ` ν∆1 . (C1 ‖n[v1])
α✲ ∆′,n ` ν∆′1 . (C′1 ‖n[v1])

and we know that the closure condition on ≈ guarantees a matching transition

∆,n ` ν∆2 . (C2 ‖n[v2]) ==
α̂
⇒ ∆′,n ` ν∆′2 . (C′2 ‖n[v2])

with

∆′,n � ν∆′1 . (C′1 ‖n[v1]) ≈ ν∆′2 . (C′2 ‖n[v2]) (1)

Now we know that this transition cannot depend on n as n is not contained in α or C2.

Therefore

∆ ` ν∆2, l . (C2 ‖ l[send(r,v2)]) ==
α̂
⇒ ∆′ ` ν∆′2, l . (C′2 ‖ l[send(r,v2)])

also holds. Let us call the target of these transitions D2. We use equation (1) and the definition

of R to observe that ∆′ � D1 R D2.

– Secondly, α may be a join(vc) . n transition. We know by Lemma 5.2 that we can simply use

a join(vc) . n from ν∆2, l . (C2 ‖ l[send(r,v2)]) to match this.

27

– Thirdly, α is send(r) . n′ and ∆′ ` D1 is (up to β-reduction) ∆,n′ ` ν∆1, l . (C1 ‖

We use these transitions, and the fact that n 6∈ f n(C2),α, to observe that there must exist

some D2 such that

∆ ` νn2, l . (C2 ‖ l[send(r,v2)])⇒ ∆ ` D2 ∆ � D2 ≡ νn2, l, l ′,a . (C′2 ‖ l[()]‖ l ′[a⇐v2]).

We now simply apply part (i) and Lemma 5.2 to (2) to obtain

∆ � D1 ≈ νn2, l, l ′,a . (C′2 ‖ l[()]‖ l ′[a⇐v2])≈ D2

as required.

• Suppose (i) and (iii) hold: we show (ii).

Again we build a relation R and show that R ∪ ≈ forms a bisimulation.

Suppose (wlog) we have

∆ � ν∆1, l . (C1 ‖ l[letx= t1 insend (r,x)]) R ν∆2, l . (C2 ‖ l[letx= t2 insend (r,x)])

witnessed by

∆,n � ν∆1 . (C1 ‖n[t1])≈ ν∆2 . (C2 ‖n[t2])

and suppose that

∆ ` ν∆1, l . (C1 ‖ l[letx= t1 insend (r,x)])
α✲ ∆′ ` D1

with n 6∈ α. Now if α originates in C1 or t1, or even as an interaction between the two, this is

easily dealt with using the hypothesis. Similarly, if α is a join(v) . n ′ transition then we can easily

find a matching transition. The case of interest arises when t1 is actually a value, v1, say and α is

a β-reduction. If v1 is of base type then v1 is necessarily a canonical value so D1 will be of the

form ν∆1, l . (C1 ‖ l[send(r,v1)]). It is relatively easy to see using the value transitions at n that the

witness guarantees that there exists some transitions

∆,n ` ν∆2 . (C2 ‖n[t2])⇒ ∆,n ` ν∆2,∆′2 . (C′2 ‖n[v2])k D
2. (2,(C2

with ∆,n � ν∆1 . (C1 ‖n[v1])≈ ν∆2,∆′2 . (C′2 ‖n[v2]). We can apply Lemma 5.2 to this, after weak-

ening to obtain

∆,n,n′,a′ � ν∆1 . (C1 ‖n[v1]‖n′[τa′])≈ ν∆2,∆′2 . (C′2 ‖n[v2]‖n′[τa′])

and we can then apply part (iii) to obtain

∆,n,a′ � ν∆1, l . (C1 ‖n[v1]‖ l[send (r,τa′)]) ≈ ν∆2,∆′2, l . (C′2 ‖n[v2]‖ l[send(r,τa′)]). (3)

We conclude by observing that

∆ ` ν∆

Thus, by hypothesis, we know that there exists a matching weak transition,

∆,n ` ν∆2 .C2 ‖n[f2] ====
n.@vc.n′

⇒ ∆,n,n′ ` ν∆2,∆′2 . (C′2 ‖n[f2]‖n′[t2])

such that

∆,n,n′ � ν∆1 .C1 ‖n[f1]‖n′[letx= vc in t1] ≈ ν∆2,∆′2 . (C′2 ‖n[f2]‖n′[t2]). (4)

Moreover, it can easily seen by analysing the matching transitions that

∆,n ` D2⇒ ∆,n ` ν∆2,∆′2, l, l ′ . (C′2 ‖n[f2]‖ l[let z= t2 in send(r,z)]‖ l ′[a⇐ f2])

also. Call the target of these transitions D′2. Thus we have

(∆,n ` ν∆2, l .C2 ‖ l[a⇐ f2]) ==
α
⇒ (∆,n ` D2)⇒ (∆,n ` D′2)

and, by using part (ii) at n′ at type σ2 with (4), and then by definition of R , we have

∆ � D1
β
→∗R≈ D′2.

– Finally, we consider the case in which α is τ, a communication between C1 and l[a⇐ f1]. In

this case, C1 must be (up to ≡) of the form

ν∆′1 . (C′1 ‖n0[let()= send(a,(v1,r)) int ′1]).

We know that, by hypothesis,

∆,n � ν∆1 .C1 ‖n[f1]≈ ν∆2 .C2 ‖n[f2],

and we also know that

(∆,n ` ν∆1 . (C1 ‖n[f1]))
send(a).n′✲ β

→∗ (∆,n,n′ ` ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′[(v1,r)]‖n[f1])).

Given this we can find matching transitions

(∆,n ` ν∆2 . (C2 ‖n[f2])) =====
send(a).n′

⇒ (∆,n,n′ ` ν∆2,∆′2 . (C′2 ‖n′[w]‖n[f2]))

with

∆,n,n′ � ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′[(r,v1)]‖n[f1])≈ ν∆2,∆′2 . (C′2 ‖n′[w]‖n[f2]).

Now, by using n′ . fst. and n′ .snd. projection transitions and Lemma 5.2, and because n′ 6∈C′2,

we know that w must be of the form (v2,r) for some v2, moreover we can find C′′2 and n′′

such that

∆,n,n′′ � ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′′[v1]‖n[f1]) ≈ ν∆2,∆′2 . (C′′2 ‖n′′[v2]‖n[f2]) (5)

with C′2 ‖n[f2]⇒C′′2 ‖n[f2].

Now we must consider two subcases according to the type of v1:

31

Case(a): If v1 is of base type then D1, up to β-reduction, will be of the form (where f1 is λx.t1)

ν∆1,∆′1, l, l ′ . (C′1 ‖n0[t
′
1]‖n[f1]‖ l[letx′=(letx= v1 in t1) insend (r,x′)]‖ l′[a⇐ f1])

In this case, we know that v1 is canonical and, by the previous equivalence, we know that v2

is also canonical, and moreover is identical to v1. We can use Lemma 5.2 to see that

∆,n � ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n[f1])≈ ν∆2,∆′2 . (C′′2 ‖n[f2])

(note that this ignores the case in which v1,v2 contain private names, but we may assume,

because of the n . νm transitions, that such names have already been extruded). We have

stated that v1 is canonical so there exists a transition

∆,n ` ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n[f1])

n.@v1

where n′ is fresh and f1 is λx.t1. This means that, by (5), there must exist matching transitions

∆,n,n′′,a′ ` ν∆2,∆′2 . (C′′2 ‖n′′[v2]‖n[f2])

====
n.@τa′ .n

′

⇒

∆,n,n′,n′′,a′ ` ν∆2,∆′2,∆′′2 . (C′′′2 ‖n′′[v2]‖n[f2]‖n′[t2])

such that

∆,n,n′,n′′,a′ � ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′′[v1]‖n[f1]‖n′[letx= τa′ in t1])

≈

ν∆2,∆′2,∆′′2 . (C′′′2 ‖n′′[v2]‖n[f2]‖n′[t2])

(7)

and ν∆2,∆: 1C

Lemma 5.5 If

(∆,a `C ‖n[τa])
α✲ (∆′,a `C′ ‖n[τa])

with α not of the form n . @v0 . n0, and a is a send -channel in C and ∆,a `C0 is of the form

ν∆0 . (n[v]‖νl . l[a⇐v]‖C′0)

with n,a 6∈ ∆0, then

(∆ ` νa . (C ‖C0))
α✲ ≈ (∆′ ` νa . (C′ ‖C0)).

Proof: The only transition of C ‖ n[τa] which may be prevented by νa . (C ‖C0) is that in which C

performs a join communication on n to receive τa. That is, C is of the form

ν∆1 . (C1 ‖n1[letx= joinn in t1])

and C′ is of the form

ν∆1 . (C1 ‖n1[letx= τa in t1]).

Clearly though,

νa . (C ‖C0) → νa,∆1 . (C1 ‖n1[letx= v in t1]‖C0)
β✲ νa,∆1 . (C1 ‖n1[t1]‖C0)[v/x]0

(Lemma 5.4) ≈ νa,∆1 . (C1 ‖n1[t1[τa/x]]‖C0)

≡ νa . (C′ ‖C0)

as required. ✷

Having shown these rather technical lemmas we may now proceed with the main Proposition: congru-

ence of bisimilarity for the level 0, canonical semantics.

Proposition 5.6 If ∆,∆0 � C1 ≈C2 and ∆,∆0 `C then ∆ � ν∆0 . (C1 ‖C)≈ ν∆0 . (C2 ‖C).

Proof: Define:

∆ � ν∆0 . (C1 ‖C) R ν∆0 . (C2 ‖C)

iff ∆,∆0 `C and there exists some~n, ~a, such that

∆,∆0 � C1 ‖
k

∏
i=0

ni[τai
]≈C2 ‖

k

∏
i=0

ni[τai
]

and such that ai is a send -channel in C1,C2, ni 6∈ ∆0, ai ∈ ∆0 (for 0≤ i≤ k), and

C ≡ ν∆′,~l . (
k

∏
i=1

ni[vi]‖
k

∏
i=0

li[ai⇐vi]‖C
′).

We will demonstrate R to be bisimulation up to (
β
→∗,≈) and our result follows in the case k = 0.

Suppose then that

∆ � ν∆0 . (C1 ‖C) R ν∆0 . (C2 ‖C)

34

and also suppose that (∆ ` ν∆0 . (C1 ‖C))
α✲ (∆′ ` D1)

Note that, for the sake of simplicity, we use the new name transitions to allow us to assume that

any name in v1 has already been extruded. Now, Lemma 5.5 tells us that

(∆ ` ν∆0 . (C2 ‖C))⇒≈ (∆ ` ν∆0 . (ν∆2 . (C′2)‖ν∆′0 . (C′0 ‖n0[t0[v2/x]]))

(call the target term D2), and by noticing that

D1
β
→∗ ν∆0 . (ν∆1 . (C′1 ‖n0[t0])‖ν∆′0 . (C′0 ‖n0[t0[v1/x]]))

along with the fact that v1 ≡ v2, (10) tells us

∆ � D1
β
→∗R≈ D2

as required.

Otherwise, v1 must be an abstraction and

D1
β
→∗ ν∆0,a′ . (ν∆1, l . (C′1 ‖n1[t1]‖ l[a′⇐v1])‖ν∆′0 . (C′0 ‖n0[t0[τa′/x]])).

We use Lemmas 5.3 and 5.2 to see that

∆,∆0,n′ � ν∆1 . (C′1, l ‖n1[t1]‖n[τa]‖ l[a′⇐ v1])≈ ν∆2, l . (C′2 ‖n[τa]‖ l[a′⇐v2]) (11)

Again, Lemma 5.5 tells us that

(∆ ` ν∆0 . (C2 ‖C))⇒≈ (∆ ` ν∆0,a′ . (ν∆2, l . (C′2 ‖ l[a′⇐v2])‖ν∆′0 . (C′0 ‖n0[t0[τa′/x]]))

(call the target term D2). Thus by using (11) we see that ∆ � D1
β
→∗R≈ D2 as required.

• Suppose

C1 ≡ ν∆1 . (C′1 ‖n1[letx= recvc in t1])

C ≡ ν∆′0 . (C′0 ‖n0[let ()= send(c,v) in t0])

D1
β
→∗ ν∆0,∆1,∆′0 . (C′1 ‖n1[letx= v in t1]‖C

′
0 ‖n0[t0])

Again, we must consider whether v1 is of base or higher type. We demonstrate only the latter as

the arguments for both are very similar. We observe immediately a further β-reduction from D1

such that

D1
β
→∗ ν∆0,a′ . (ν∆1 . (C′1 ‖n1[t1[τa′/x]])‖ν∆′0, l . (C′0 ‖n0[t0]‖ l[a′⇐v]))

We know that

(∆,∆0,a′ `C1)
recv(c,τa′)✲ ≈ (∆,∆0,a′ ` ν∆′1 . (C′1 ‖n1[t1[τa′/x]]))

so, by the hypothesis that

∆,∆0 � C1 ‖n[τa]≈C2 ‖n[τa],

36

say, we also know that there exists some

(∆,∆0,a′ `C2 ‖n[τa]) =====
recv(c,τa′)

⇒ (∆,∆0,a′ ` ν∆′2 . (C′2 ‖n[τa])

such that

∆,∆0,a′ � ν∆′1 . (C′1 ‖n1[t1[τa′/x]]‖n[τa])≈ ν∆′2 . (C′2 ‖n[τa]) (12)

We use Lemma 5.5 to observe that

(∆ ` ν∆0 . (C2 ‖C))⇒≈ (∆ ` ν∆0,a′ . (ν∆′2 .C′2 ‖ν∆′0, l . (C′0 ‖n0[t0]‖ l[a′⇐v])))

call the target term D2. We use (12) to conclude that ∆ ` D1
β
→∗R D2.

• Suppose

C1 ≡ ν∆1 . (C′1 ‖n1[v1])

C ≡ ν∆′0 . (C′0 ‖n0[letx= join

• Suppose

C1 ≡ ν∆1 . (C′1 ‖n1[letx= joinn0 in t1])

C ≡ ν∆′0 . (C′0 ‖n0[v])

D1 ≡ ν∆0,∆1,∆′0 . (C′1 ‖n1[letx= v in t1]‖C
′
0 ‖n0[v])

Suppose firstly that

