
Assigning Types to Processes

NOBUKO YOSHIDA and MATTHEW HENNESSY

ABSTRACT. In wide area distributed systems it is now common for higher-order code

4 Nobuko Yoshida and Matthew Hennessy

TYPING PROCESSES

10 Nobuko Yoshida and Matthew Hennessy

(β), and communication (com). Both these require a definition of substitution of

values for variable

12 Nobuko Yoshida and Matthew Hennessy

B

Client

Client

A

req

18 Nobuko Yoshida and Matthew Hennessy

on part (A).

To derive the judgement it is sufficient to prove that for any w in dom(∆1u

∆2), Γ ` ∆(w)� (∆1u∆2)(w). There are three possibilities for w; it is either

in dom(∆1)\dom(∆2), in dom(∆1)�dom(∆2) or dom(∆2)�dom(∆1). In

the first case we have, from the hypothesis, that Γ ` ∆(w) � ∆i(w) and we

may apply induction (on part (A)) to obtain Γ ` ∆(w) � ∆1(w)u∆2(w) and

the result follows, because in this case (∆1u∆2)(w) = ∆1(w)u∆2(w).

The other two possibilities for w are similar but simpler; the inductive

step is not required.

Parts (C) and (D) are also proved simultaneously, this time by simultaneous

induction on the definition of the operators u and t

20 Nobuko Yoshida and Matthew Hennessy

(Common)

(VAL)

` Γ;u :τ;Γ0 : Env

Γ;u :τ;Γ0

` u : τ (CON) ` Γ : Env

Γ ` 1 : nat

etc.

(SUBH)
Γ ` P : ρ Γ ` ρ� ρ0

Γ ` P : ρ0

(SUBN) Γ ` u : σ Γ ` σ � σ0

Γ ` u : σ0

(Function)

(ABSH)
Γ;X :σH ` P : ρ

Γ ` λ(X :σH)P : σH ! ρ (APPH)
Γ ` P : σH ! ρ Γ ` Q : σH

Γ ` PQ : ρ

(ABSN)
Γ;x :σ ` P : ρ

Γ ` λ(x :σ)P : (x :σ)! ρ (APPN)
Γ ` P : (x :σ)! ρ Γ ` u : σ

Γ ` Pu : ρfu=xg

(Process)

(NIL)

` Γ : Env

Γ ` 0 : []

(PAR)

Γ ` P1;2 : π
Γ ` P1 jP2 : π

(REP)

Γ ` P : π
Γ ` �P : π

(RES)

Γ; a :σ ` P : π
Γ ` (νa :σ)P : π=a

(OUT)

π `Γ u : (τ1; :::;τn)
O Γ ` P : π

Γ `Vi : τi τi = σi) π `Γ Vi : σi

Γ ` u!hV1; :::;VniP : π

(IN)

π `Γ u : (τ1; :::;τn)
I

Γ;x1 :τ1; :::;xn :τn ` P : π ;x1 :τ1; :::;xn :τn

Γ ` u?(x1 :τ1; :::;xn :τn)P : π

FIGURE 7. Typing System for λπv

The corresponding elimination (APPN) allows dynamic channel instantiation

into types during β-reduction. If a term P has a type (x : σ)! ρ, we can ap-

ply a name a whose type is less than σ to P. Then a is substituted for x in ρ.

Γ ` P : (x :σ)! ρ; Γ ` a : σ
Γ ` Pa : ρfa=xg

As an example of the use of this rule consider the channel abstraction

P� λ(x :nat)(x!h1i jb?

s s

22 Nobuko Yoshida and Matthew Hennessy

is the process type which maps b to the same type (int)

O. Then with the output

rule, together with (NIL) and the abstraction rules, we can establish

∆ab ` b!h1i0 : [∆b]

and therefore

∆ab ` a!hb!h1i0i0 : [a : h∆bi
O

]

THE INPUT RULE, (IN): The rule for prefixing is a straightforward generalisa-

tion of that in [32]:

π `Γ u : (τ)I Γ;x :τ` P : π;x :τ

24 Nobuko Yoshida and Matthew Hennessy

An application of the rule (OUT) gives the judgement

x : (int)I; y : (int)O;z : int ` y!hzi : [∆xy]

where ∆xy denotes the interface fx : (int)I; y : (int)Og. An application of the

input rule (IN), followed by an application of (REP) now gives

x : (int)I; y : (int)O ` � x?(z :int) y!hzi : [∆xy]

Now we may apply the channel abstraction rule (ABSN) twice to obtain the fol-

lowing type for the forwarder:

` Fw : (x : (int)I)! (y : (int)O)! [∆xy]

Let us now see how we can use this typing to assign a type to the process R, also

discussed in the Introduction:

R (= s!hci c?(y : τfw) (y a b)

For convenience τfw denotes the type assigned to the forwarder and let us define

∆R
def

= fa : (int)I;b : (int)O;c : (

28 Nobuko Yoshida and Matthew Hennessy

Subject Reduction; again it may be viewed as a generalisation of Lemma 3.5:

LEMMA

30 Nobuko Yoshida and Matthew Hennessy

a?(x1 :τ1; :::;xn :τn)P
Γ;π

�!err if Γ 6` [a : (τ1; :::;τn)
I

]� π.

a!hV1; :::;VniP
Γ;π

�!err if no τi s.t. Γ ` [a : (τ1; :::;τn)
O

]� π and Γ `Vi : τi.

P (Γ;a:σ);π

�����!err

(νa :σ)P Γ;(π=a)

����!err

P
Γ;π

�! or Q
Γ;π

�!

P jQ Γ;π

�!err

P Γ;π

�!err

� P Γ;π

�!err

FIGURE 9. Run-time errors

Analysing the hypothesis we obtain

Γ;x :σ` P : [∆1;x :σ] with Γ;x :σ` [u : (σ)I] � [∆1]� [∆] x 62 fv(∆1)

Γ ` Q : [∆2] with Γ ` [u : (σ0

)

O

;v :σ0

]� [∆2]� [∆]

Γ ` v : σ0.

Noting x 62 fv(σ), we can apply (Channel narrowing), Lemma 3.6, to obtain Γ `

[u : (σ)I] � [∆1]. Then we have: Γ ` Γ(u) � ∆(u) � ∆1(u) � (σ)I and Γ `

Γ(u) � ∆(u)� ∆2(u)� (σ0

)

O, which imply Γ ` σ0

� σ.

Using subsumption we then have Γ ` v : σ and so we can apply (Substitution

Lemma), Lemma 5.2, to obtain Γ `Pfv=xg : [∆1;x :σ]fv=xg. By calculation this

type is [∆1]t[v:σ] and we have Γ` [∆1]t[v:σ]� [∆1]t[v:σ0

]� [∆1]t[∆2]�

[∆]. Hence by subsumption we have the required Γ ` Pfv=xg : [∆].

5.2 Type Safety

Out typing system is an extension of that for the λ-calculus from [10] and that for

the π-calculus from [22]; consequently it guarantees the absence of the typical

run-time errors associated with these languages. Rather than duplicate the for-

mulation of these kinds of errors, which involves the development complicated

tagging notation, here we concentrate on the novel run-time type errors which

our typing system can catch.

Intuitively Γ ` P : π should mean that, assuming the environment Γ, the pro-

cess P satisfies the interface π. If π is the undifferentiated type proc then, viewed

as an interface, it provides no information. However if it has the form [∆] this

means that P can use at most the resources mentioned in ∆; moreover these re-

sources can only be used according to the capabilities they are assigned in ∆.

A simple formalisation of this intuitive idea is given in Figure 9, using a unary

predicate P Γ;π

�!err . The first two clauses are the most significant. The first says

that, relative to Γ, P violates the interface π if it can input on the channel a but the

interface π does not assign any input capability to a

32 Nobuko Yoshida and Matthew Hennessy

Syntax: others from Figure 2.

System: M;N; ::: ::= P j N kM j (νa :σ)N j 0

Term: P;Q; ::: ::= Spawn(P) j � � � as in Figure 2

34 Nobuko Yoshida and Matthew Hennessy

36 Nobuko Yoshida and Matthew Hennessy

TYPED BEHAVIOURAL EQUALITY Types constrain the behaviour of processes

and their environments and consequently have an impact on when their behaviour

should be deemed to be equivalent. Typed behavioural equivalences have already

been investigated for various process calculi in papers such as [18, 22, 23, 31].

Similar techniques could be applied to our language, resulting in a new typed

equivalence, where equalities are influenced by the presence of fine-grained pro-

cess types. Investigation of such equivalences is an interesting research topic,

particularly in its application to the refinement of the context equality of [26];

we leave this for future work.

TYPE LIMITATIONS One limitation of our typing system is that, while name

variables in types can be abstracted by channel dependency types

38 Nobuko Yoshida and Matthew Hennessy

(Free Names)

Terms:

fn(0) = fn(l) = fn(x) = /0 fn(a) = fag

fn(P jQ) = fn(PQ) = fn(P)[fn(Q)

fn(�P) = fn(P)

fn(u?(x1 :τ1; :::;xn :τn)P)

= fn(u)[fn(τ1)[:::[fn(P fn

42 Nobuko Yoshida and Matthew Hennessy

[9] Giacalone, A., Mistra, P. and Prasad, S., Operational and Algebraic Semantics for Facile: A

Symmetric Integration of Concurrent and Functional Programming,

